《第三章微分中值定理与导数的应用.doc》由会员分享,可在线阅读,更多相关《第三章微分中值定理与导数的应用.doc(33页珍藏版)》请在三一办公上搜索。
1、 第三章 微分中值定理与导数的应用教学目的:1、 理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒中值定理。2、 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。3、 会用二阶导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。4、 掌握用洛必达法则求未定式极限的方法。5、 知道曲率和曲率半径的概念,会计算曲率和曲率半径。6、 知道方程近似解的二分法及切线性。教学重点: 1、罗尔定理、拉格朗日中值定理;2、函数的极值 ,判断函数的单调性和求函数极值的方法;3、函数图形的凹凸性;4、洛必达
2、法则。教学难点: 1、罗尔定理、拉格朗日中值定理的应用; 2、极值的判断方法; 3、图形的凹凸性及函数的图形描绘; 4、洛必达法则的灵活运用。3. 1 微分中值定理一、 教学目的与要求:1 掌握罗尔定理、拉格朗日定理、柯西中值定理的条件和结论,强调定理的条件是充分而非必要的;2 会验证中值定理的正确性,掌握用拉格朗日中值定理证明不等式的方法(关键是构造辅助函数);3 理解三个中值定理之间的关系。二、 重点、难点:中值定理的应用三、 主要外语词汇:Fermat , Rolle ,Lagrange,Cauchy,Medium value axioms,Lead a reason,shut zone
3、,open zone.四、 辅助教学情况:多媒体课件第四版和第五版(修改)五、 参考教材(资料):同济大学高等数学第五版 一、罗尔定理 费马引理 设函数f(x)在点x0的某邻域U(x0)内有定义, 并且在x0处可导, 如果对任意xU(x0), 有 f(x)f(x0) (或f(x)f(x0), 那么f (x0)=0. 罗尔定理 如果函数y=f(x)在闭区间a, b上连续, 在开区间(a, b)内可导, 且有f(a)=f(b), 那么在(a, b)内至少在一点x , 使得f (x)=0. 简要证明: (1)如果f(x)是常函数, 则f (x)0, 定理的结论显然成立. (2)如果f(x)不是常函数
4、, 则f(x)在(a, b)内至少有一个最大值点或最小值点, 不妨设有一最大值点x(a, b). 于是, , 所以f (x)=0. 罗尔定理的几何意义: 二、拉格朗日中值定理 拉格朗日中值定理 如果函数f(x)在闭区间a, b上连续, 在开区间(a, b)内可导, 那么在(a, b)内至少有一点x(axb), 使得等式f(b)-f(a)=f (x)(b-a)成立. 拉格朗日中值定理的几何意义: f (x)=, 定理的证明: 引进辅函数令 j(x)=f(x)-f(a)-(x-a). 容易验证函数f(x)适合罗尔定理的条件: j(a)=j(b)=0, j(x)在闭区间a, b 上连续在开区间(a,
5、 b)内可导, 且j (x)=f (x)-. 根据罗尔定理, 可知在开区间(a, b)内至少有一点x, 使j (x)=0, 即f (x)-=0. 由此得 = f (x) , 即 f(b)-f(a)=f (x)(b-a). 定理证毕. f(b)-f(a)=f (x)(b-a)叫做拉格朗日中值公式. 这个公式对于b0或Dx0)或x+Dx, x (Dx0)应用拉格朗日中值公式, 得f(x+Dx)-f(x)=f (x+qDx)Dx (0q1). 如果记f(x)为y, 则上式又可写为Dy=f (x+qDx)Dx (0q1). 试与微分d y=f (x)Dx 比较: d y =f (x)Dx是函数增量Dy
6、 的近似表达式, 而f (x+qDx)Dx是函数增量Dy 的精确表达式. 作为拉格朗日中值定理的应用, 我们证明如下定理: 定理 如果函数f(x)在区间I上的导数恒为零, 那么f(x)在区间I上是一个常数. 证 在区间I上任取两点x1, x2(x1x2), 应用拉格朗日中值定理, 就得f(x2)-f(x1)=f (x)(x2 - x1) (x1x0时, . 证 设f(x)=ln(1+x), 显然f(x)在区间0, x上满足拉格朗日中值定理的条件, 根据定理, 就有 f(x)-f(0)=f (x)(x-0), 0xx。由于f(0)=0, , 因此上式即为 .又由0xx, 有 . 三、柯西中值定理
7、 设曲线弧C由参数方程 (axb)表示, 其中x为参数. 如果曲线C上除端点外处处具有不垂直于横轴的切线, 那么在曲线C上必有一点x=x , 使曲线上该点的切线平行于连结曲线端点的弦AB, 曲线C上点x=x 处的切线的斜率为 , 弦AB的斜率为 . 于是 . 柯西中值定理 如果函数f(x)及F(x)在闭区间a, b上连续, 在开区间(a, b)内可导, 且F (x)在(a, b)内的每一点处均不为零, 那么在(a, b)内至少有一点x , 使等式 .成立. 显然, 如果取F(x)=x, 那么F(b)-F(a)=b-a, F (x)=1, 因而柯西中值公式就可以写成: f(b)-f(a)=f (
8、x)(b-a) (axb), 这样就变成了拉格朗日中值公式了. 3. 2 洛必达法则一、 教学目的与要求:1 理解洛必达法则的使用条件,掌握用洛必达法则求未定式的极限的方法;2 了解洛必达法则求极限的注意问题。二、 重点、难点:用洛必达法则求极限。三、 主要外语词汇:LHospital ,Undecided type四、 助教学情况:多媒体课件第四版和第五版(修改)五、 参考教材(资料):同济大学高等数学第五版一 型和型未定式的解法:洛必达法则定义:若当(或)时,函数和都趋于零(或无穷大),则极限可能存在、也可能不存在,通常称为型和型未定式. 例如 , (型); , (型).定理1:设 (1)
9、当时, 函数和都趋于零;(2)在点的某去心邻域内,和都存在且;(3) 存在(或无穷大),则定义:这种在一定条件下通过分子分母分别求导再求极限来确定未定式的值的 方法称为洛必达法则证明: 定义辅助函数, 在内任取一点, 在以和为端点的区间上函数和满足柯西中值定理的条件, 则有 , (在与之间)当时,有, 所以当, 有 故. 证毕说明: 1.如果仍属于型, 且和满足洛必达法则的条件,可继续使用洛必达法则, 即; 2.当时, 该法则仍然成立, 有; 3.对(或)时的未定式,也有相应的洛必达法则; 4. 洛必达法则是充分条件; 5. 如果数列极限也属于未定式的极限问题,需先将其转换为函数极限,然后使用
10、洛必达法则,从而求出数列极限.例1 求, (型)解 原式= 例2 求, (型)解 原式= = 例3 求 , (型)解 原式=1例4 求 , (型).解 原式= = =1例5 求 , (型)解 原式= = = = 注意:洛必达法则是求未定式的一种有效方法,但与其它求极限方法结合使用,效果更好.例6 求解 原式= = =二型未定式的求法关键: 将其它类型未定式化为洛必达法则可解决的类型型和型.1型未定式的求法步骤:或例7 求 型解 原式=步骤:例8 求 型解 原式=步骤: 例9 求 型解 原式=例10 求 型解 原式=例11 求 型解 由于而 所以 原式=注意:洛必达法则的使用条件例12 求解 原
11、式=极限不存在 (洛必达法条件不满足的情况)正确解法为 原式=例13 求解 设,则 因为=从而 原式=3. 3 泰勒公式一、 教学目的与要求:1 掌握Taylor公式及其余项的两种形式;2 熟记常用函数的n阶Maclaurin公式.3了解用Taylor公式证明不等式,求极限. 二、 重点、难点:求函数的Taylor公式三、 主要外语词汇: Taylor, Maclaurin,四、 辅助教学情况:多媒体课件第四版和第五版(修改)五、 参考教材(资料):同济大学高等数学第五版 对于一些较复杂的函数, 为了便于研究, 往往希望用一些简单的函数来近似表达. 由于用多项式表示的函数, 只要对自变量进行有
12、限次加、减、乘三种运算, 便能求出它的函数值, 因此我们经常用多项式来近似表达函数. 在微分的应用中已经知道, 当|x|很小时, 有如下的近似等式: e x 1+x, ln(1+x) x. 这些都是用一次多项式来近似表达函数的例子. 但是这种近似表达式还存在着不足之处: 首先是精确度不高, 这所产生的误差仅是关于x的高阶无穷小; 其次是用它来作近似计算时, 不能具体估算出误差大小. 因此, 对于精确度要求较高且需要估计误差时候, 就必须用高次多项式来近似表达函数, 同时给出误差公式. 设函数f(x)在含有x0的开区间内具有直到(n+1)阶导数, 现在我们希望做的是: 找出一个关于(x-x0 )
13、的n次多项式 p n(x)=a 0+a 1(x-x0 )+ a 2(x-x0 ) 2+ + a n (x-x0 ) n来近似表达f(x), 要求p n(x)与f(x)之差是比(x-x0 ) n高阶的无穷小, 并给出误差| f (x)- p n (x)|的具体表达式. 我们自然希望p n(x)与f(x)在x0 的各阶导数(直到(n+1)阶导数)相等, 这样就有 p n(x)=a 0+a 1(x-x0 )+ a 2(x-x0 ) 2+ + a n (x-x0 ) n , p n(x)= a 1+2 a 2(x-x0 ) + +na n (x-x0 ) n-1 , p n(x)= 2 a 2 + 3
14、2a 3(x-x0 ) + + n (n-1)a n (x-x0 ) n-2 , p n(x)= 3!a 3 +432a 4(x-x0 ) + + n (n-1)(n-2)a n (x-x0 ) n-3 , , p n (n)(x)=n! a n . 于是 pn (x0 )=a 0 , p n (x0 )= a 1 , p n (x0 )= 2! a 2 , p n (x)= 3!a 3 , , p n (n)(x)=n! a n. 按要求有 f(x0)=p n(x0) =a0, f (x0)= p n (x0)= a 1 , f (x0)= p n (x0)= 2! a 2 , f (x0)
15、= p n (x0)= 3!a 3 , f (n)(x0)= p n (n)(x0)=n! a n . 从而有 a 0=f(x0 ), a 1=f (x0 ), , , , . (k=0, 1, 2, , n). 于是就有 pn(x)= f(x0)+ f (x0) (x-x0)(x-x0) 2 + (x-x0) n . 泰勒中值定理 如果函数f(x)在含有x0的某个开区间(a, b)内具有直到(n+1)的阶导数, 则当x 在(a, b)内时, f(x)可以表示为(x-x0 )的一个n次多项式与一个余项R n(x)之和: 其中(x 介于x0与x之间).这里 多项式 . 称为函数f(x)按(x-x
16、0 )的幂展开的n 次近似多项式, 公式 + , 称为f(x)按(x-x0 )的幂展开的n 阶泰勒公式, 而R n(x)的表达式其中(x介于x与x0之间). 称为拉格朗日型余项. 当n=0时, 泰勒公式变成拉格朗日中值公式: f(x)=f(x0 )+f (x)(x-x0 ) (x在x0 与x 之间). 因此, 泰勒中值定理是拉格朗日中值定理的推广. 如果对于某个固定的n, 当x在区间(a, b)内变动时, |f (n+1)(x)|总不超过一个常数M, 则有估计式: ,及 . 可见, 妆x x0时, 误差|R n(x)|是比(x-x0 )n高阶的无穷小, 即 R n (x)=o(x-x0 ) n
17、. 在不需要余项的精确表达式时, n 阶泰勒公式也可写成 + . 当x0 =0时的泰勒公式称为麦克劳林公式, 就是 ,或 ,其中.由此得近似公式: . 误差估计式变为: . 例1写出函数f(x)=e x 的n 阶麦克劳林公式. 解: 因为 f(x)=f (x)=f (x)= =f ( n)(x)=e x , 所以 f(0)=f (0)=f (0)= =f ( n)(0)=1 , 于是 (0q1), 并有 . 这时所产性的误差为 |R n(x)|=|x n+1| x | n+1. 当x=1时, 可得e的近似式: . 其误差为 |R n |0, 那么函数y=f(x)在a, b上单调增加; (2)如
18、果在(a, b)内f (x)0, 那么函数y=f(x)在a, b上单调减少. 证明 只证(1). 在a, b上任取两点x1 , x2 (x1 x2 ), 应用拉格朗日中值定理, 得到f(x2 )-f(x1 )=f (x)(x2-x1) (x1 x0, 因此, 如果在(a, b)内导数f (x)保持正号, 即f (x)0, 那么也有f (x)0. 于是f(x2 )-f(x1 )=f (x)(x2 -x1 )0, 即 f(x1 )0, 所以由判定法可知函数y=x-cos x 在0, 2p上的单调增加. 例2 讨论函数y=e x -x-1的单调性. (没指明在什么区间怎么办?) 解 y=e x -1
19、. 函数y=e x -x-1的定义域为(-, +). 因为在(-, 0)内y0, 所以函数y=e x -x-1在0, +)上单调增加. 例3. 讨论函数的单调性. 解: 函数的定义域为(-, +). 当时, 函数的导数为 (x0), 函数在x=0处不可导. 当x=0时, 函数的导数不存在. 因为x0时, y0时, y0, 所以函数在0, +)上单调增加. 如果函数在定义区间上连续, 除去有限个导数不存在的点外导数存在且连续, 那么只要用方程f (x)=0的根及导数不存在的点来划分函数f(x)的定义区间, 就能保证f (x)在各个部分区间内保持固定的符号, 因而函数f(x)在每个部分区间上单调.
20、 例4. 确定函数f(x)=2x3-9x2+12x-3的单调区间. 解 这个函数的定义域为:(-, +). 函数的导数为:f (x)=6x2 -18x +12 = 6(x-1)(x-2). 导数为零的点有两个: x1 =1、x2 =2. 列表分析: (-, 11, 22, +)f (x)+-+f(x)函数f(x)在区间(-, 1和2, +)内单调增加, 在区间1, 2上单调减少. 例5. 讨论函数y=x3的单调性. 解 函数的定义域为: (-, +). 函数的导数为: y=3x2 . 除当x=0时, y=0外, 在其余各点处均有y0. 因此函数y=x 3在区间(-, 0及0, +)内都是单调增
21、加的. 从而在整个定义域: (-, +)内是单调增加的. 在x=0处曲线有一水平切线. 一般地, 如果f (x)在某区间内的有限个点处为零, 在其余各点处均为正(或负)时, 那么f(x)在该区间上仍旧是单调增加(或单调减少)的. 例6. 证明: 当x1时, . 证明: 令, 则 . 因为当x1时, f (x)0, 因此f(x)在1, +)上f(x)单调增加, 从而当x1时, f(x)f(1). 由于f(1)=0, 故f(x)f(1)=0, 即 , 也就是(x1). 二、曲线的凹凸与拐点 凹凸性的概念: x1 x 2 yx O f(x2) f(x1) x1 x 2 yx O f(x2) f(x1
22、) 定义 设f(x)在区间I上连续, 如果对I上任意两点x 1, x 2, 恒有, 那么称f(x)在I上的图形是(向上)凹的(或凹弧); 如果恒有, 那么称f(x)在I上的图形是(向上)凸的(或凸弧). 定义 设函数y=f(x)在区间I上连续, 如果函数的曲线位于其上任意一点的切线的上方,则称该曲线在区间I上是凹的;如果函数的曲线位于其上任意一点的切线的下方,则称该曲线在区间I上是凸的. 凹凸性的判定: 定理 设f(x)在a, b上连续, 在(a, b)内具有一阶和二阶导数, 那么 (1)若在(a, b)内f (x)0, 则f(x)在a, b上的图形是凹的; (2)若在(a, b)内f (x)
23、0, 则f(x)在a, b上的图形是凸的. 简要证明 只证(1). 设x1, x2a, b, 且x1x2, 记. 由拉格朗日中值公式, 得 , , , , 两式相加并应用拉格朗日中值公式得 , , 即, 所以f(x)在a, b上的图形是凹的. 拐点: 连续曲线y=f(x)上凹弧与凸弧的分界点称为这曲线的拐点. 确定曲线y=f(x)的凹凸区间和拐点的步骤: (1)确定函数y=f(x)的定义域; (2)求出在二阶导数f (x); (3)求使二阶导数为零的点和使二阶导数不存在的点; (4)判断或列表判断, 确定出曲线凹凸区间和拐点; 注: 根据具体情况(1)(3)步有时省略. 例1. 判断曲线y=l
24、n x 的凹凸性. 解: , . 因为在函数y=ln x的定义域(0, +)内, y0, 所以曲线y=ln x是凸的. 例2. 判断曲线y=x3的凹凸性. 解: y=3x 2, y=6x . 由y=0, 得x=0. 因为当x0时, y0时, y0, 所以曲线在0, +)内为凹的. 例3. 求曲线y=2x 3+3x 2-2x+14的拐点. 解: y=6x 2+6x-12, . 令y=0, 得. 因为当时, y0, 所以点(, )是曲线的拐点. 例4. 求曲线y=3x 4-4x 3+1的拐点及凹、凸的区间. 解: (1)函数y=3x 4-4x 3+1的定义域为(-, +); (2),; (3)解方
25、程y=0, 得, ; (4)列表判断: (-, 0) 0 (0, 2/3) 2/3 (2/3, +) f (x) + 0 - 0 + f(x) 1 11/27 在区间(-, 0和2/3, +)上曲线是凹的, 在区间0, 2/3上曲线是凸的. 点(0, 1)和(2/3, 11/27)是曲线的拐点. 例5 问曲线y=x 4是否有拐点? 解 y=4x 3, y=12x 2. 当x 0时, y0, 在区间(-, +)内曲线是凹的, 因此曲线无拐点. 例6. 求曲线的拐点. 解 (1)函数的定义域为(-, +); (2) , ; (3)无二阶导数为零的点, 二阶导数不存在的点为x=0; (4)判断: 当
26、x0; 当x0时, y0. 因此, 点(0, 0)曲线的拐点. 3. 5 函数的极值与最大值最小值一、 教学目的与要求:1 理解函数极值的概念,掌握函数极值的求法;2 了解驻点、极值点、极值等概念.了解可导函数极值存在的必要条件.知道极值点与驻点的区别与联系;3 掌握求解一些简单的实际问题中最大值和最小值的方法,以几何问题为主.二、重点(难点):极值的求法二、 主要外语词汇:The pole be worth,Halt to order,Be worth biggest,The worth smallest,The giggest value,Minimum value四、辅助教学情况:多媒体
27、课件第四版和第五版(修改)五、 参考教材(资料):同济大学高等数学第五版 一、函数的极值及其求法 极值的定义: 定义 设函数f(x)在区间(a, b)内有定义, x0(a, b). 如果在x0的某一去心邻域内有f(x)f(x0), 则称f(x0)是函数f(x)的一个极小值. 设函数f(x)在点x0的某邻域U(x0)内有定义, 如果在去心邻域U(x0)内有f(x)f(x0), 则称f(x0)是函数 f(x)的一个极大值(或极小值). 函数的极大值与极小值统称为函数的极值, 使函数取得极值的点称为极值点. 函数的极大值和极小值概念是局部性的. 如果f(x0)是函数f(x)的一个极大值, 那只是就x
28、0 附近的一个局部范围来说, f(x0)是f(x)的一个最大值; 如果就f(x)的整个定义域来说, f(x0)不一定是最大值. 关于极小值也类似. 极值与水平切线的关系: 在函数取得极值处, 曲线上的切线是水平的. 但曲线上有水平切线的地方, 函数不一定取得极值. 定理1 (必要条件)设函数f(x)在点x0 处可导, 且在x0 处取得极值, 那么这函数在x0 处的导数为零, 即f (x0)=0. 证 为确定起见, 假定f(x0)是极大值(极小值的情形可类似地证明). 根据极大值的定义, 在x0 的某个去心邻域内, 对于任何点x , f(x) f(x0)均成立. 于是 当x x0 时, 因此 ;
29、 从而得到 f (x0) = 0 . 简要证明: 假定f(x0)是极大值. 根据极大值的定义, 在x0的某个去心邻域内有f(x)0, 在x0的某一右邻域内f (x)0, 那么函数f(x)在x0处取得极大值; (2) 如果在x0的某一左邻域内f (x)0, 那么函数f(x)在x0处取得极小值; (3)如果在x0的某一邻域内f (x)不改变符号, 那么函数f(x)在x0处没有极值. 定理 (第一种充分条件)设函数f(x)在含x0的区间(a, b)内连续, 在(a, x0)及(x0, b)内可导. (1)如果在(a, x0)内f (x)0, 在(x0, b)内f (x)0, 那么函数f(x)在x0处
30、取得极大值; (2)如果在(a, x0)内f (x)0, 那么函数f(x)在x0处取得极小值; (3)如果在(a, x0)及(x0, b)内 f (x)的符号相同, 那么函数f(x)在x0处没有极值. 定理2(第一充分条件)设函数f(x)在x0连续, 且在x0的某去心邻域(x0-d, x0)(x0, x0+d)内可导. (1)如果在(x0-d, x0)内f (x)0, 在(x0, x0+d)内f (x)0, 那么函数f(x)在x0处取得极大值; (2)如果在(x0-d, x0)内f (x)0, 那么函数f(x)在x0处取得极小值; (3)如果在(x0-d, x0)及(x0, x0+d)内 f
31、(x)的符号相同, 那么函数f(x)在x0处没有极值. 定理2也可简单地这样说: 当x在x0的邻近渐增地经过x0时, 如果f (x)的符号由负变正, 那么f(x)在x0处取得极大值; 如果f (x)的符号由正变负, 那么f(x)在x0处取得极小值; 如果f (x)的符号并不改变, 那么f(x)在x0处没有极值 (注: 定理的叙述与教材有所不同) . 确定极值点和极值的步骤: (1)求出导数f (x); (2)求出f(x)的全部驻点和不可导点; (3)列表判断(考察f (x)的符号在每个驻点和不可导点的左右邻近的情况, 以便确定该点是否是极值点, 如果是极值点, 还要按定理2确定对应的函数值是极
32、大值还是极小值); (4)确定出函数的所有极值点和极值. 例1求函数的极值. 解(1)f(x)在(-, +)内连续, 除x=-1外处处可导, 且 ; (2)令f (x)=0, 得驻点x=1; x=-1为f(x)的不可导点; (3)列表判断 x(-, -1)-1(-1, 1)1(1, +)f (x)+不可导-0+f(x)0 (4)极大值为f(-1)=0, 极小值为. 定理3 (第二种充分条件) 设函数f(x)在点x0处具有二阶导数且f (x0)=0, f (x0)0, 那么 (1)当f (x0)0时, 函数f(x)在x0处取得极小值; 证明 在情形(1), 由于f (x0)0, 按二阶导数的定义
33、有. 根据函数极限的局部保号性, 当x 在x0的足够小的去心邻域内时, . 但f (x0)=0, 所以上式即. 从而知道, 对于这去心邻域内的x来说, f (x)与x-x0符号相反. 因此, 当x-x00即x0; 当x-x00即xx0时, f (x)0. 根据定理2, f(x)在点x0处取得极大值. 类似地可以证明情形(2). 简要证明: 在情形(1), 由于f (x0)0, f (x0)=0, 按二阶导数的定义有 .根据函数极限的局部保号性, 在x0的某一去心邻域内有 . 从而在该邻域内, 当x0; 当xx0时, f (x)0. 根据定理2, f(x)在点x0处取得极大值. 定理3 表明, 如果函数f(x)在驻点x0处的二导数f (x0) 0, 那么该点x0一定是极值点, 并且可以按二阶导数f (x0)的符来判定f(x0)是极大值还是极小值. 但如果f (x0)=0, 定理3就不能应用. 讨论: 函数f (x)=-x4, g(x)=x3在点x=0是否有极值? 提示: f (x)=4x 3, f (0)=0; f (x)=12x2, f (0)=0. 但当x0时f (x)0时f (x)0, 所以f(0) 为极小值. g (x)=3x2, g (0)=0; g (x)=6x, g (0)=0. 但g(0)不是极值
链接地址:https://www.31ppt.com/p-4195121.html