电大必备小抄常微分方程试题库.doc
《电大必备小抄常微分方程试题库.doc》由会员分享,可在线阅读,更多相关《电大必备小抄常微分方程试题库.doc(37页珍藏版)》请在三一办公上搜索。
1、常微分方程试题库(四)、计算题, (每小题10分)1. 解方程组: ; 2. 解方程组:;3. 解方程组:; 4. 解方程组:;5. 解方程组:; 6. 解方程组:;7. 解方程组:;8. 解方程组:; 9. 解方程组:;10. 解方程组:; 11. 解方程组:;12. 解方程:;13. 解方程:14. 解方程: ; 15. 解方程: ;16. 解方程: ; 17. 解方程: ;18. 解方程:; 19. 解方程:;20. 解方程: ; 21. 解方程:;22. 解方程:; 23. 解方程:24. 解方程: ; 25. 解方程:;26. 解方程组:,; 27. 解方程组:,;28. 解方程组:
2、,;29. 解方程组:;30. 解方程:;选题说明:每套试题选3个题为宜。(四)、计算题参考答案与评分标准, (每小题10分)1. 解方程组: .解:其系数矩阵为: , (2分)特征多项式为:,其特征根为:, (2分)当时,由方程组,可解得特征向量为: , (2分)当时,由方程组,可解得特征向量为: , (2分)所以方程组的基本解组为: . (2分)2. 解方程组: .解:其系数矩阵为: , (2分)特征多项式为:,其特征根为:, (2分)当时,由方程组,可解得特征向量为: , (2分)由 , (2分)可知方程组的基本解组为: . (2分)3. 解方程组:.解:其系数矩阵为: , (2分)特征
3、多项式为:,其特征根为:, (2分)当时,由方程组,可解得特征向量为: , (2分)由 , (2分)可知方程组实的基本解组为: . (2分)4. 解方程组:解一:其对应齐次线性方程的系数矩阵为: , (1分)特征多项式为:,其特征根为:, (2分)当时,由方程组,可解得特征向量为: , (1分)当时,由方程组,可解得特征向量为: , (1分)所以对应齐次线性方程组的基本解组为: . (1分)现在求非齐次方程组形如 的特解,代入原方程可得:解之得 , (2分)从而最后可得该方程组的通解为 (2分)解二:原方程可化为: (1分)消去可得:,由得齐方程的基本解组为: (2分)其特解为: (2分) (
4、1分)所以 , (1分)代入第一个方程得: , (2分)方程组的通解为: (2分)5. 解方程组:. 解:其系数矩阵为: , (1分)特征多项式为:,其特征根为:, (2分)当时,由方程组,可解得特征向量为: , (1分)当时, , (2分)由方程组可解得: , (1分)由 可得: (1分)从而方程组的基本解组为: . (2分)6. 解方程组:.解:其系数矩阵为: , (1分)特征多项式为:,其特征根为:, (2分)而 (2分)所以 , (3分)所以方程组的基本解组为: . (2分)7. 解方程组:.解:其系数矩阵为: , (1分)特征多项式为:,其特征根为:, (2分)当时,由方程组,可解得
5、特征向量为: , (1分)当时, 由方程组可解得: (2分)再由 , (2分)从而方程组实的基本解组为: . (2分)8. 解方程组:; 解:原方程可化为: (1分)消去可得:,由得齐方程的基本解组为: (2分)其特解为: (2分)所以 , (1分)代入第一个方程得: , (2分)方程组的通解为:, (2分)9. 解方程组:; 解:原方程可化为: (1分)消去可得:,由得齐方程的基本解组为: (2分)其特解为: (2分)所以 , (1分)代入第一个方程得: , (2分)方程组的通解为:, . (2分)10. 解方程组: 解:原方程可化为: (1分)消去可得: , (2分)由得齐方程的基本解组为
6、: (1分)其特解为: (2分)所以 , (1分)代入第一个方程得: , (2分)方程组的通解为:, . (1分)11. 解方程组:解:原方程可化为: (1分)消去可得: , (2分)由得齐方程的基本解组为: (1分)其特解为: , (2分)所以,代入第一、二个方程得: (1分) (1分)方程组的通解为: (2分)12. 解方程:解:作变换,并记, (2分)则原方程可化为: , (2分)其特征方程为:, (2分)特征根为2重根,所以其基本解组为:, (2分)将代回得原方程的通解为: . (2分)13. 解方程:解:作变换,并记, (2分)则原方程可化为: , (2分)其特征方程为:, (2分)
7、为2重根,所以其基本解组为:, (2分)将代回得原方程的通解为: . (2分)14. 解方程:解:对应齐方程的特征根为:, (2分)其实基本解组为:, (2分)得原方程的特解为:, (4分)所以原方程的通解为: . (2分)15. 解方程:解:对应齐方程的特征根为2重根, (2分)其基本解组为:, (2分)得原方程的特解为:, (4分)所以原方程的通解为: . (2分)16. 解方程:; 解:对应齐方程的特征根为:, (2分)其基本解组为:, (2分)得原方程的特解为:, (4分)所以原方程的通解为: . (2分)17. 解方程:解:对应齐方程的特征根为:, (2分)其基本解组为:, (2分)
8、得原方程的特解为:,(4分)所以原方程的通解为: . (2分)18. 解方程:解:对应齐方程的特征根为:, (2分)其基本解组为:, (2分)得原方程的特解为:, (4分)所以原方程的通解为: . (2分)19. 解方程:解:对应齐方程的特征根为:, (2分)其实基本解组为:, (2分)得原方程的特解为:,(2分) , (2分)所以原方程的通解为: . (2分)20. 解方程: 解:对应齐方程的特征根为:, (2分)其基本解组为:, (2分)得原方程的特解为:,(4分)所以原方程的通解为: . (2分)21. 解方程:解:对应齐方程的特征根为2重根, (2分)其基本解组为:, (2分)得原方程
9、的特解为:, (4分)所以原方程的通解为: . (2分)22. 解方程:解:对应齐方程的特征根为:, (2分)其基本解组为:, (2分)得原方程的特解为: (2分), (2分)所以原方程的通解为: . (2分)23. 解方程:解:作变换,并记, (2分)则原方程可化为: , (2分)其特征方程为:, (2分),为特征根,所以其基本解组为:, (2分)将代回得原方程的通解为: . (2分)24. 解方程: ; 解:作变换,并记, (2分)则原方程可化为: , (2分)其特征方程为:, (2分)特征根为,所以其基本解组为:, (2分)将代回得原方程的通解为: . (2分)25. 解方程:;解:作变
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电大 必备 小抄常 微分方程 试题库
链接地址:https://www.31ppt.com/p-4195012.html