最新电大《复变函数与积分变换》作业答案.doc
《最新电大《复变函数与积分变换》作业答案.doc》由会员分享,可在线阅读,更多相关《最新电大《复变函数与积分变换》作业答案.doc(18页珍藏版)》请在三一办公上搜索。
1、复变函数与积分变换作业参考答案习题1:4、计算下列各式(1) ; (3) ;(5) ,求,; (7) 。解:(1) ;(3) ;(5) ,(7) 因为,所以,即时,;时,;时,;时,;时,;时,习题2:3、下列函数在何处可导?何处解析?在可导点求出其导数(2) ; (4) (6) 。解:(2) 因为,这四个一阶偏导数都连续,故和处处可微,但柯西-黎曼方程仅在上成立,所以只在直线上可导,此时,但复平面上处处不解析(4) 因为,这四个一阶偏导数都连续,故和处处可微,且满足柯西-黎曼方程,所以在复平面内解析,并且 (6) 所以,在除外处处解析,且4、指出下列函数的奇点(1) ; (2) 解:(1)
2、所以,的奇点为0,(2) 所以,的奇点为,10、如果在区域内解析,并且满足下列条件之一,试证在内是一常数(2) 在内解析;证明:由在区域内解析,知、在区域内可微,且,同理,由在内解析,知,从而我们得到,所以、皆为常数,故在内是一常数15、求解下列方程:(2) 解:,于是18、求,的值及主值解:,所以其主值为;,所以其主值为19、求,的值解:;20、求,的值解:;22、解方程:(1) ;解:,习题3:1、沿下列路径计算积分:(1) 从原点至的直线段;(2) 从原点沿实轴至2,再由2铅直向上至;(3) 从原点沿虚轴至,再由沿水平方向向右至解:(1) 从原点至的直线段的复参数方程为,参数,所以(2)
3、 从原点沿实轴至2的直线段的复参数方程为,参数,由2铅直向上至的直线段的复参数方程为,参数,所以(3) 从原点沿虚轴至的直线段的复参数方程为,参数,由沿水平方向向右至的复参数方程为,参数,所以2、分别沿与算出积分的值解:的复参数方程为,参数所以;的复参数方程为,参数所以5、计算积分的值,其中为正向圆周:(1) 解:设是内以被积函数的奇点为圆心的正向圆周,那么6、试用观察法得出下列积分的值,并说明观察时所依据的是什么?是正向圆周:(1) ; (2) ; (3) ;(4) ; (5) ; (6) 解:(1) ,根据柯西积分定理;(2) ,根据柯西积分定理;(3) ,根据柯西积分定理;(4) ,根据
4、复合闭路定理;(5) ,根据柯西积分定理;(6) ,根据柯西积分定理及复合闭路定理7、沿指定曲线的正向计算下列积分:(1) ,;(2) ,;(3) ,;(4) ,;(5) ,;(6) ,为包围的闭曲线;(7) ,;(8) ,;(9) ,;(10) ,解:(1) ;(2) ;(3) ;(4) ;(5) ;(6) ;(7) ;(8) ;(9) ;(10) 21、证明:和都是调和函数,但是不是解析函数证明:因为,所以,且,即和都是调和函数,但是不是解析函数22、由下列各已知调和函数求解析函数,并写出的表达式:(1) ;(2) ,;(3) ,解:(1) 因为是调和函数,所以,于是那么,则,所以,(2)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 复变函数与积分变换 最新 电大 函数 积分 变换 作业 答案
链接地址:https://www.31ppt.com/p-4194987.html