常微分方程在数学建模中的应用.doc
《常微分方程在数学建模中的应用.doc》由会员分享,可在线阅读,更多相关《常微分方程在数学建模中的应用.doc(21页珍藏版)》请在三一办公上搜索。
1、目 录摘要01引 言12 常微分方程的发展概况23 数学建模简介24 常微分方程和数学建模结合的特点25 常微分方程在数学建模中的应用35.1 建立微分方程的方法35.2市场价格模型55.3广告模型65.4人口预测模型85.5混合溶液的数学模型115.6振动模型125.7教育问题模型166 总 结18参考文献19常微分方程在数学建模中的应用摘要常微分方程是在17世纪伴随着微积分而发展起来的一门具有重要应用价值的学科.它是研究连续量变化规律的重要工具,是众多实际问题与数学之间联系的重要桥梁.在历史上,牛顿正是通过求解常微分方程证实了地球绕太阳运动的轨道是椭圆;天文学家通过常微分方程的计算,预见了
2、海王星的存在.随着工业化的进展,常微分方程在航海、航空工业生产以及自然科学的研究中发挥了重要作用.计算机和计算技术的发展,使微分方程的求解突破了经典方法的局限,迈向数值计算和图像模拟,这为微分方程的应用提供了更为广阔的天地和有效手段,也使得建立数学模型显得尤为重要.本文主要从市场价格模型、广告模型、人口预测模型、混合溶液的数学模型、教育问题模型来论述常微分方程在数学建模中的应用。关键字:常微分方程;数学建模;市场价格模型;广告模型;人口预测模型;混合溶液的数学模型;教育问题模型1引 言在初等数学中,方程有很多种,比如线性方程、指数方程、对数方程、三角方程等,然而并不能解决所有的实际问题。要研究
3、实际问题就要寻求满足某些条件的一个或几个未知数方程。这类问题的基本思想和初等数学的解方程思想有着许多的相似之处,但是在方程的形式、求解的具体方法、求出解的性质等方面依然存在很多不同的地方,为了解决这类问题,从而产生了微分方程。常微分方程是许多理工科专业需要开设的基础课程,常微分方程与微积分是同时产生的,一开始就成为人类认识世界和改造世界的有力工具,随着生产实践和科学技术的发展,该学科已经演变发展为数学学科理论中理论联系实际的一个重要分支。随着数学建模活动的日益活跃,利用微分方程建立数学模型,成为解决实际问题不可或缺的方法与工具。数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在
4、规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。简而言之,建立数学模型的这个过程就称为数学建模。微分方程是一门独立的数学学科,有完整的数学体系,微分方程是数学联系实际,并应用实际的重要桥
5、梁,是各个学科进行科学研究的强有力工具。一般来说,微分方程就是联系自变量、未知函数以及未知函数的某些导数或微分的关系式.如果其中未知函数是一元函数,则称为常微分方程。微分方程模型通常运用的是所谓平衡原理,即物资在某段时间的变化量与其在这段时间累增加和减少的差处于平衡状态,如物理中的动量、能量守衡。在代数上我们列方程也常用这种平衡关系列方程式。在数学建模中,这种思想也广泛应用。2 常微分方程的发展概况17世纪,常微分方程与微积分相伴而生,微积分是她的母体,生产生活实践是她生命的源泉。至18世纪上半叶,人们的目光主要放在常微分方程的“求解”上,常微分方程处于实域解析理论阶段.工业革命带来的数学繁荣
6、促进了常微分方程的成长,先探讨解的存在与唯一性而不是一味求解。奇点理论,边值解,形式级数解、自守函数论先后出现,使常微分方程成长为一个数学分支,步入了复域解析阶段。从19世纪后半叶开始,不解方程而确定解的性质的定性理论开始建立,数学思想方法再次实现了大的进步,朝着解析方法、几何方法、数值方法3个主要方向扩展.随着伯克霍夫(美)提出拓扑动力系统(1927年),将一般定性理论进行了抽象和升华,逐渐发展成微分动力系统.300 多 年 来,常徽分方程诞生于数学与自然科学进行崭新结合的16、17世纪,成长于生产实践和数学的发展进程,表现出强大的生命力和活力,蕴涵着丰富的数学思想方法。3 数学建模简介对复
7、杂现象进行分析,用数学语言来描述其中的关系或规律,抽象出恰当的数学关系,并将其实际问题转化成为一个数学问题,同时运用数学系统的知识方法对数学问题进行求解,对现实问题作出解释的过程,这就是数学建模与数学不同,构建数学模型的过程不仅要对复杂的问题进行提炼、归纳和总结而且还应进行演绎推理。所以构建数学模型的过程也是一个演绎推理与归纳总结相结合的过程。对现实问题的观察、假设、归纳,怎样将其化为一个数学问题是数学建模的关键。但这仅仅是数学建模的开始,完整的数学建模过程还应求解数学问题并能得到所要求的解。同时还应看到得出的解是否与数据或实际经验相吻合,是否能解释实际问题;否则,还应重新修正。4 常微分方程
8、和数学建模结合的特点数学建模也是一个分析问题、解决问题的创造性思维过程,它的内容来自于实践、结果应用于实践、方法结合于实践,因此要选准切人点,才能有机地结合常微分方程的内容,充分体现数学建模的思想意图。应用微分方程理论在实际解决问题的过程中建立的数学模型,一般是动态数学模型,其结果极其简明,但整个推导过程却有点繁杂,不过还是能给人们以合理的解释。有机地将数学建模与常微分方程结合,必定能使常微分方程在实际应用过程中发挥更多更好的作用,以便能解决更多的实际问题,产生更好效益。5 常微分方程在数学建模中的应用模型化是通过研究模型来揭示原型形态、本质、特征的科学思维方法。它可以有目的地集中研究认识对象
9、的主要结构和关系,抓住事物中的主要矛盾以及矛盾的主要方面,具有科学性和极强的可重复操作性,同时,模型化也是实践决定认识的一次飞跃过程。常微分方程自诞生之初,就是模型化的产物,尤其在实域解析理论阶段表现得特别充分。常微分方程早期多研究机械、电学系统,之后逐渐加强与其它学科的渗透支援,理论开始丰富和深化即使是20世纪30年代,蓬勃发展的无线电技术中的孤立等幅振荡,也极大她促进了极限环的研究。丰富了常微分方程的理论.时至今日:放射性元素的衰变模型、人口乃至生态系统的模型、医学方面的传染病模型、气象学中的洛仑兹模型、军事方面的军备竞赛湘作战模型等,给我们展示了常微分方程模型化的壮阔画卷.随着常微分方程
10、的不断发展,常微分方程模型也逐渐现代化,在确定连续模型的基础上,从静态优化的微分法模型向动态模型、平衡与稳定状态模型及动态优化模型发展,对于复杂的实际问题,要建立一个较准确的描述它的状态的微分方程是件很困难的事,因为它不仅涉及到多种数学概念与方法,而且还涉及到该问题所属的实际学科的许多知识,有时甚至还要靠实验的帮助,才能建立起较能反映实际、而在数学上又有可能处理的方程来。但我们这里谈的是建立一阶常微分方程,难度自然就大大降低了(有的还是要在某些理想化的条件下) 。然而,对于初学者来说,要顺利、准确地列出方程还是有个学习与摸索的过程。为叙述上的方便,我们把实际问题粗略地分为几何学问题和其它学科问
11、题两大类。对前者,我们建立方程时要求熟练地掌握导数、微分的几何意义,以及在分析学中熟知用导数、微分来表达许多其它几何概念,它们之间的关系式等;对后者,首先要求我们掌握导数是各种意义下的瞬时变化率这一物理意义,然后把这个概念用到该问题所属学科的某种相关联的定律中去,以列出我们所要的方程来。应用微分方程解决实际问题,一般有三个步骤: (1) 建立微分方程; (2) 求解微分方程(或由方程讨论解的性质) ; (3) 由所得的解或解的性质,反过来解释该实际问题。这里介绍几个典型的用微分方程建立数学模型的例子.5.1 建立微分方程的方法微分方程是现代数学的一个重要分支,是研究函数变化规律的有力工具,它在
12、科技、工程、经济管理、生态、环境、人口、交通等各个领域中有着广泛的应用。在许多实际问题中,当直接导出变量之间的函数关系较为困难,但导出包含未知函数的导数或微分的关系式较为容易时,可用建立微分方程模型的方法来研究该问题。建立微分方程的方法有多种,例如:设位于坐标原点的甲舰向位于轴上的点处的乙舰发射导弹,导弹始终对准乙舰。如果乙舰以最大的速度(是常数)沿平行于轴的直线行驶,导弹的速度是,求导弹运行的曲线。又乙舰行驶多远时,导弹将它击中?解 设导弹的轨迹曲线为,并设经过时间,导弹位于点,乙舰位于点。由于导弹始终对准乙舰。故此时直线就是导弹的运动轨迹曲线在点处的切线,即有亦即又根据题意,弧的长度为的5
13、倍,即由此得整理得代入初值条件,解得所以,导弹的运动轨迹如下图1所示:图1 由上图可知,当时,即当乙舰航行到点处时被导弹击中,被击中的时间为。对于建立微分方程的方法,除了以上例子所举出的利用运用已知规律的方法外,还有微元法、机理分析法(模拟近似法)等。5.2市场价格模型对于纯粹的市场经济来说,商品市场价格取决于市场供需之间的关系,市场价格能促使商品的供给与需求相等(这样的价格称为(静态)均衡价格).也就是说,如果不考虑商品价格形成的动态过程,那么商品的市场价格应能保证市场的供需平衡,但是,实际的市场价格不会恰好等于均衡价格,而且价格也不会是静态的,应是随时间不断变化的动态过程.试建立描述市场价
14、格形成的动态过程的数学模型 假设在某一时刻,商品的价格为,它与该商品的均衡价格间有差别,此时,存在供需差,此供需差促使价格变动.对新的价格,又有新的供需差,如此不断调节,就构成市场价格形成的动态过程,假设价格的变化率与需求和供给之差成正比,并记为需求函数,为供给函数(为参数),于是其中为商品在时刻的价格,为正常数.若设,则上式变为 其中均为正常数,其解为 .下面对所得结果进行讨论:(1)设为静态均衡价格 ,则其应满足 ,即 ,于是得,从而价格函数可写为 ,令,取极限得 这说明,市场价格逐步趋于均衡价格.又若初始价格,则动态价格就维持在均衡价格上,整个动态过程就化为静态过程;(2)由于 ,所以,
15、当时,单调下降向靠拢;当时, ,单调增加向靠拢.这说明:初始价格高于均衡价格时,动态价格就要逐步降低,且逐步靠近均衡价格;否则,动态价格就要逐步升高.因此,式在一定程度上反映了价格影响需求与供给,而需求与供给反过来又影响价格的动态过程,并指出了动态价格逐步向均衡价格靠拢的变化趋势.5.3广告模型在商品销售中,很少有像上例中讲的仅靠商品自身做广告,而是要靠各种媒体大肆宣传。虽然说“只要是美的,人人喜欢”,“酒香不怕巷子深”,但是人们已越来越认识到广告的作用。本模型就从数学角度探讨广告与销售量的关系,并指出广告在商品的不同销售阶段的差异。无论你是听广播,还是看报纸,或是收看电视,常可看到、听到商品
16、广告。随着社会向现代化的发展,商品广告对企业生产所起的作用越来越得到社会的承认和人们的重视。商品广告确实是调整商品销售量的强有力手段,然而,你是否了解广告与销售之间的内在联系?如何评价不同时期的广告效果?这个问题对于生产企业、对于那些为推销商品作广告的企业极为重要。下面我们介绍独家销售的广告模型。我们假设:1.商品的销售速度会因作广告而增加,但这种增加是有一定限度的,当商品在市场上趋于饱和时,销售速度将趋于它的极限值,当速度达到它的极限值时,无论再作何种形式的广告,销售速度都将减慢。2.自然衰减是销售速度的一种性质,即商品销售速度随商品的销售率增加而减小。3.令表示时刻商品销售速度;表示时刻广
17、告水平(以费用表示);为销售的饱和水平,即市场对商品的最大容纳能力,它表示销售速度的上极限;为衰减因子,即广告作用随时间增加而自然衰减的速度,为常数。问题中涉及的是商品销售速度随时间的变化情况:商品销售速度的变化=增长-自然衰减。为描述商品销售速度的增长,由模型假设1知商品销售速度的净增长率应该是商品销售速度的减函数,并且存在一个饱和水平,使得。为简单起见,我们设为的线性减函数,则有,其中用表示响应系数,即广告水平对商品销售速度的影响能力,为常数。 因此可建立如下微分方程模型:。从模型方程可知,当或时,都有 。为求解该模型,我们选择一个广告策略。在时间段内,用于广告的总费用为,则,代入模型方程
18、有。令,则有。其解为。若令,则。当时,模型为,其通解为,而时,所以。故 。的图形如图3-1所示。 图2 图35.4人口预测模型 由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型. 1马尔萨斯(Malthus)模型英国人口统计学家马尔萨斯(17661834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口
19、出生率是一个常数,于1789年在人口原理一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为,在此假设下,推导并求解人口随时间变化的数学模型.解 设时刻的人口为,把当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在到时间段内,人口的增长量为,并设时刻的人口为,于是 这就是马尔萨斯人口模型,用分离变量法易求出其解为,此式表明人口以指数规律随时间无限增长. 模型检验:据估计1961年地球上的人口总数为,而在以后7年中,人口总数以每
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微分方程 数学 建模 中的 应用
链接地址:https://www.31ppt.com/p-4194928.html