定态薛定谔方程的matlab求解(一).doc
《定态薛定谔方程的matlab求解(一).doc》由会员分享,可在线阅读,更多相关《定态薛定谔方程的matlab求解(一).doc(17页珍藏版)》请在三一办公上搜索。
1、定态薛定谔方程的MATLAB求解(一)利用矩阵法对定态薛定谔方程的MATLAB求解摘要:本文首先对薛定谔方程的提出及发展做了一个简单介绍。然后,以在一维空间运动的粒子构成的谐振子的体系为例,详细介绍了矩阵法求解薛定谔方程的过程及公式推导。最后,通过MATLAB编程仿真实现了求解结果。关键词:定态薛定谔方程求解 矩阵法 MATLAB仿真薛定谔方程简介1.1背景资料薛定谔方程是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了
2、解微观系统的性质。其仅适用于速度不太大的非相对论粒子,其中也没有包含关于粒子自旋的描述。当计及相对论效应时,薛定谔方程由相对论量子力学方程所取代,其中自然包含了粒子的自旋。薛定谔方程建立于 1926年。它是一个非相对论的波动方程。它反映了描述微观粒子的状态随时间变化的规律,它在量子力学中的地位相当于牛顿定律对于经典力学一样,是量子力学的基本假设之一。设描述微观粒子状态的波函数为(r,t),质量为m的微观粒子在势场V(r,t)中运动的薛定谔方程为在给定初始条件和边界条件以及波函数所满足的单值、有限、连续的条件下,可解出波函数(r,t)。由此可计算粒子的分布概率和任何可能实验的平均值(期望值)。当
3、势函数V不依赖于时间t时,粒子具有确定的能量,粒子的状态称为定态。定态时的波函数可写成式中(r)称为定态波函数,满足定态薛定谔方程,这一方程在数学上称为本征方程,式中E为本征值,是定态能量,(r)又称为属于本征值E的本征函数。 量子力学中求解粒子问题常归结为解薛定谔方程或定态薛定谔方程。薛定谔方程揭示了微观物理世界物质运动的基本规律,被广泛地用于原子物理、核物理和固体物理,对于原子、分子、核、固体等一系列问题中求解的结果都与实际符合得很好。 定态薛定谔方程直角坐标系形式定态薛定谔方程球坐标系形式1.2定态薛定谔方程条件V(r,t)=V(r), 与t无关。用分离变量法, 令=(r)f(t),代入
4、薛定谔方程,得两个方程:此称定态薛定谔方程 整个定态波函数形式:特点:波函数由空间部分函数与时间部分函数相乘;B时间部分函数是确定的。定态波函数几率密度W与t无关,几率分布不随时间而变,因此称为定态。1.3本征方程、本征函数与本征值算符: 本征方程:本征值,有多个,甚至无穷多个:本征值为的本征函数,也有多个,甚至无穷多个,有时一个本征值对应多个不同的本征函数,这称为简并。若一个本征值对应的不同本征函数数目为N,则称N重简并。1.4 定态情况下的薛定谔方程一般解1、定态薛定谔方程或不含时的薛定谔方程是能量本征方程,E就称为体系的能量本征值,而相应的解称为能量的本征函数。2、当不显含时时,体系的能
5、量是收恒量,可用分离变量。3、解定态薛定谔方程,关键是写出哈密顿量算符。2. 利用矩阵法求解薛定谔方程以在一维空间运动的粒子构成的谐振子的体系为例。该粒子的势能是,是谐振子的角频率,因此谐振子的哈密顿量为 。当时,谐振子的势能变为无穷大,因此,粒子只能在有限的空间上运动,并且能量值谱是分立的。下面采用矩阵的方法,确定谐振子的能量分立值。从运动方程出发 (1)而势能 那么 又代入上式(1)得 即(2)在矩阵形式下,该方程可以写为含时坐标矩阵元 (3)对它求导,我们得到代入上式后,有(4)其中 (5)所以,除了当或外,所有的坐标矩阵元都等于零当时,由(5)式有即 同理,因此,只有变化时,才能得到频
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 定态薛定谔 方程 matlab 求解
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-4194868.html