二阶常微分方程边值问题的数值解法毕业论文.doc
《二阶常微分方程边值问题的数值解法毕业论文.doc》由会员分享,可在线阅读,更多相关《二阶常微分方程边值问题的数值解法毕业论文.doc(42页珍藏版)》请在三一办公上搜索。
1、二阶常微分方程边值问题的数值解法摘 要 求解微分方程数值解的方法是多种多样的,它本身已形成一个独立的研究方向,其要点是对微分方程定解问题进行离散化本文以研究二阶常微分方程边值问题的数值解法为目标,综合所学相关知识和二阶常微分方程的相关理论,通过对此类方程的数值解法的研究,系统的复习并进一步加深对二阶常微分方成的数值解法的理解,为下一步更加深入的学习和研究奠定基础对于二阶常微分方程的边值问题,我们总结了两种常用的数值方法:打靶法和有限差分法在本文中我们主要探讨关于有限差分法的数值解法构造差分格式主要有两种途径:基于数值积分的构造方法和基于Taylor展开的构造方法后一种更为灵活,它在构造差分格式
2、的同时还可以得到关于截断误差的估计在本文中对差分方法列出了详细的计算步骤和Matlab程序代码,通过具体的算例对这种方法的优缺点进行了细致的比较在第一章中,本文将系统地介绍二阶常微分方程和差分法的一些背景材料在第二章中,本文将通过Taylor展开分别求得二阶常微分方程边值问题数值解的差分格式在第三章中,在第二章的基础上利用Matlab求解具体算例,并进行误差分析关键词:常微分方程,边值问题,差分法,Taylor展开,数值解The Numerical Solutions ofSecond-Order Ordinary Differential Equationswith the Boundary
3、 Value Problems ABSTRACTThe numerical solutions for solving differential equations are various. It formed an independent research branch. The key point is the discretization of the definite solution problems of differential equations. The goal of this paper is the numerical methods for solving secon
4、d-order ordinary differential equations with the boundary value problems. This paper introduces the mathematics knowledge with the theory of finite difference. Through solving the problems, reviewing what have been learned systematically and understanding the ideas and methods of the finite differen
5、ce method in a deeper layer, we can establish a foundation for the future learning.For the second-order ordinary differential equations with the boundary value problems, we review two kinds of numerical methods commonly used for linear boundary value problems, i.e. shooting method and finite differe
6、nce method. There are mainly two ways to create these finite difference methods: i.e. Taylor series expansion method and Numerical Integration. The later one is more flexible, because at the same time it can get the estimates of the truncation errors. We give the exact calculating steps and Matlab c
7、odes. Moreover, we compare the advantages and disadvantages in detail of these two methods through a specific numerical example. In the first chapter, we will introduce some backgrounds of the ordinary differential equations and the difference method. In the second chapter, we will obtain difference
8、 schemes of the numerical solutions of the Second-Order ordinary differential equations with the boundary value problems through the Taylor expansion. In the third chapter, we using Matlab to solve the specific examples on the basis of the second chapter, and analyzing the errors. KEY WORDS: Ordinar
9、y Differential Equations, Boundary Value Problems, Finite Difference Method, Taylor Expansion, Numerical Solution毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。 作者签名: 日期: 毕业论文(设计)授权使用说明本论文(设计)作者完全了解*学院有关保留、使
10、用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。学校可以公布论文(设计)的全部或部分内容。保密的论文(设计)在解密后适用本规定。 作者签名: 指导教师签名: 日期: 日期: 注 意 事 项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词 5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理
11、工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务
12、书、开题报告、外文译文、译文原文(复印件)次序装订3)其它目 录前 言1第一章 二阶常微分方程2第二章 边值问题的数值解法72.1 有限差分逼近的相关概念72.2差分方程的建立82.3差分问题的可解性102.4差分方程的收敛性112.5 差分方程的稳定性122.6有限差分分方程的解法12第三章 具体算例15 3.1 二阶常微分方程算例的数值解15 3.2 算例结果分析25总 结26参考文献27附 录30前 言 求解常微分方程边值问题在计算数学领域中一直占很重要的地位,但是常微分方程中仅有一些典型的方程能求出解析解,大部分是求不出解析解的因此常微分方程数值解的研究具有重要的现实意义 用数值方法求
13、解微分方程问题几乎是与微分方程同时出现的,其历史可以追溯到月一个半世纪前上个世纪中叶以后,由于微分方程本身的理论的深入发展,兼之电子计算机的问世,用数值方法求解微分方程问题的研究更进入了一个蓬勃发展的新局面求解常微分边值问题最有效的方法之一是有限差分法经典的有限差分法是利用差商代替导数(数值微分)或者差分插值(数值积分)的方法来构造差分格式为了构造具有较高截断误差的差分格式,近年来一些学者提出了利用样条函数或者参数样条函数的方法来近似代替未知函数通过配置的方法,构造出一些样条差分格式,但高阶数值微分公式和关于高次样条函数的高阶导数的计算都较为困难,同时构造差分格式引起的计算量非常大,有的方法精
14、度并不高,所以这些方法都不能很好地适应高阶微分方程 本文就二阶常微分方程边值问题,利用差分法求解数值解有限差分法是数值方法中最经典的方法这种方法发展较早,比较成熟,较多用于求解双曲型和抛物型问题用有限差分法近似求解常微分方程问题有多种多样的方法,并且也可以用不同的构造方法来建立这些有限差分法用Taylor级数展开方法是最常用的方法用Taylor法展开来建立差分格式,实际上等价于用差商来近似微商得到相应的差分格式第一章 二阶常微分方程 如果在一个微分方程中出现的未知函数只含一个自变量,这个方程就叫做常微分方程,也可以简单地叫做微分方程1 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔
15、创立对数的时候,就讨论过微分方程的近似解牛顿在建立微积分的同时,对简单的微分方程用级数来求解后来瑞士数学家雅各布贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具对常微分方程的研究1可分为以下几个阶段: 发展初期是对具体的常微分方程希望能用初等函数或超越函数表示其解,属于“求通解”时代 莱布尼茨(Leibniz)曾专门
16、研究利用变量变换解决一阶微分方程的求解问题,而欧拉(Euler)则试图用积分因子统一处理伯努利(Bernoulli)、里卡蒂(Riccati)微分方程就是在研究初等积分时提出后人以他们的名字命名的方程 早期的微分方程的求解热潮被刘维尔(Liouvile)于1841年证明里卡蒂方程不存在一般的初等解而中断 加上柯西(Cauchy)初值问题的提出,常微分方程从“求通解”转向“求定解”时代 首先是对常微分方程定解问题包括初值和边值问题的解的存在性2、唯一性等解的性质的研究 其次,针对线性微分方程,特别是二阶线性微分方程,通过专门定义一些特殊函数以求解特殊方程,如贝塞尔(Bessel)函数、勒让德(L
17、egendre)多项式等,这促成了微分方程与(复变)函数论结合产生微分方程解析理论 同时,由于天文计算的需要促进了常微分方程摄动理论以及小参数、幂级数等近似方法的研究 19世纪末,天体力学中的太阳系稳定性问题需要研究常微分方程解的大范围性态,从而使常微分方程的研究从“求定解问题”转向“求所有解”的新时代 首先,庞加莱(Poincare)创立了定性理论和方法研究常微分方程解的大范围性态由于希尔伯特(Hilbert)提出20世纪23个数学问题中关于极限环个数的第16问题,大大促进了定性理论的发展 另一方面李雅普诺夫(Lyapunov)提出的运动稳定性理论,用于解决方程解的初值不影响原方程解的趋向问
18、题,在天文、物理及工程技术中得到广泛应用,先后在前苏联、美国受到极大重视 同时,伯克霍夫(Birkhoff)在20世纪初在动力系统方面开辟了一个新领域,由于拓扑方法的渗入,20世纪50年代后经阿诺德(Arnold)、斯梅尔(Smale)等大数学家的参与而得到蓬勃发展 除定性、稳定性和动力系统理论外,还有非线性振动理论、摄动和奇异摄动理论及变换群理论在20世纪也得到了迅速的发展 20世纪六七十年代以后,常微分方程由于计算机技术的发展迎来了新的时期,从“求所有解”转入“求特殊解”时代,发现了具有新性质的解和方程,如混沌(解)、奇异吸引子及孤立子等科技和数学界的重大发现是混沌、孤立子和分形,其中混沌
19、,孤立子直接与微分方程有关洛伦茨在20世纪60年代发现了称为Lorenz方程的常微分方程,初始敏感的特征导致了混沌现象的发现引起了科学界的巨大震动,斯梅尔称之为“利用牛顿的定律推翻了牛顿决定论”孤立子本是物理上有重要意义的偏微分方程的新类型解,但它们往往对应于可积的哈密顿系统的常微分方程,从而引发了对停顿百年的常微分方程可积性的研究热潮常微分方程的研究领域其它学科或领域的结合而出现各种新的研究分支,如控制论、种群生态学、分支理论、泛函微分方程、脉冲微分方程、广义微分方程、时标微分方程等 常微分方程3属于数学分析的一支,是数学中与应用密切相关的基础学科,其本身也在不断发展中,学好常微分方程基本理
20、论与方法对进一步学习研究数学理论和实际应用非常重要 而常微分方程边值问题则是微分方程理论研究的一个基本问题,也是最为重要的课题之一 它在应用科学和工程领域有着非常重要的作用,例如工程学、力学、天文学、经济学以及生物学等领域中的许多实际问题通常会归结为常微分方程边值问题的求解 虽然常微分方程问题有许多解析方法可以求解,但这些方法只能求解一些特殊类型的方程,对从实际问题中提炼出来的微分方程往往不再适用,因而对常微分方程边值问题的数值方法的研究就显得尤为重要 经典的数值方法有: 试射法(打靶法)和有限差分法4而用打靶法求解线性问题时,解的精度较高,这是因为打靶法将边值问题的求解方法转化为相应的初值问
21、题的求解,因而可以使用具有较高精度的Runge_Kuta法,但是算法的稳定性较差常微分方程边值问题已被深入而广泛地研究,并取得了系统而深刻的结果科学和工程技术中有许多实际问题都可以转化为微分方程的求解问题,而大量的微分方程很难求出其解析解,因此,微分方程的数值解法的研究就显得具有重要意义边值问题主要研究微分方程的求解及解的性质,其补充条件由以自变量取某些值时未知函数及其导数的值而定,许多数学和物理问题都可以归结为微分方程边值问题解这类问题的基本思想和初等数学解方程的基本思想很相似,也就是要把研究的问题中已知函数和未知函数之间的关系找出来,从列出的包含未知函数的一个或几个方程中去求得未知函数的表
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二阶常 微分方程 边值问题 数值 解法 毕业论文
链接地址:https://www.31ppt.com/p-4194828.html