分块矩阵在行列式计算中的应用.doc
《分块矩阵在行列式计算中的应用.doc》由会员分享,可在线阅读,更多相关《分块矩阵在行列式计算中的应用.doc(30页珍藏版)》请在三一办公上搜索。
1、南 阳 理 工 学 院 本科生毕业设计(论文)学院(部): 数理学院 专 业: 数学与应用数学 学 生: 童家祎 指导 教师: 宋苏罗 完成日期 2013 年 5 月南阳理工学院本科生毕业设计(论文)分块矩阵在行列式计算中的应用The Application of Block Matrix in Computing Determinant总计:毕业设计(论文)25页表 格: 0 个插 图: 0 幅南 阳 理 工 学 院 本 科 毕 业 设 计(论文)分块矩阵在行列式计算中的应用The Application of Block Matrix in Computing Determinant学 院
2、 (系): 数理学院 专 业: 数学与应用数学 学 生 姓 名: 童家祎 学 号: 101109071 指 导 教 师(职称): 宋苏罗(教授) 评 阅 教 师: 完 成 日 期: 2013.5 南阳理工学院Nanyang Institute of Technology分块矩阵在行列式计算中的应用数学与应用数学 童家祎摘 要分块矩阵是矩阵理论中的一个重要内容,在高等代数中有着很重要的应用矩阵分块的思想来源于对矩阵运算复杂度和储存思想的考虑,矩阵分块能降低矩阵的阶数,使矩阵条理更清晰并简化运算本文从研究行列式以及分块矩阵的基本性质入手,在查阅了大量文献的基础上,给出了与行列式计算有关的分块矩阵相
3、关定理将分块矩阵降阶的思想应用在行列式计算过程中,推导出了借助分块矩阵进行行列式计算的多种方法,最后通过具体的例子对比说明,很多时候借助分块矩阵计算行列式比用行列式的常规方法计算更简单、直观、清晰关键词分块矩阵;行列式;初等变换The Application of Block Matrix in Computing DeterminantMathematics and Applied Mathematics Major TONG Jia-yiAbstract: Block Matrix is an important content of Matrix theory, which has a
4、significant usage in Advanced Algebra. The idea of Block Matrix comes from the consideration of the memory storage and the complexity of Matrix Manipulation. Block Matrix can reduce the exponent number of Matrix to make the consecution of Matrix clearer and the operation of Matrix easier. This artic
5、le starts with basic properties of Matrix, and gives some main conclusions of Block Matrix on the basis of accessing a lot of literature. And then, we use the reduction thoughts of Block Matrix in process of determinant calculation to derive multiple methods of determinant calculation with the block
6、 matrix. At last, we use object lessons to compare, shows that computing the determinant by means of block matrix is often more simple, intuitive and clear than conventional methods of determinant calculation. Key words: determinant; block matrix; elementary transformation目 录0 引言.11 分块矩阵的概念.11.1 分块矩
7、阵的定义.1 1.2 分块矩阵的运算.2 1.3 特殊的分块矩阵.42 分块矩阵的初等变换.53 分块矩阵的相关定理及其证明.64 利用分块矩阵计算行列式.10 4.1 利用定理1计算行列式.10 4.2 利用定理2计算行列式.11 4.3 利用定理3计算行列式.13 4.4 利用定理4计算行列式.18 4.5 利用定理5计算行列式.194.6 利用定理6计算行列式.21结束语.23参考文献.24致谢.250 引言矩阵是一个有力的数学工具,有着广泛的应用,同时矩阵也是代数特别是线性代数的一个主要研究对象矩阵的概念和性质都较易掌握,但是对于阶数较大的矩阵的运算则会是一个很繁琐的过程,甚至仅仅依靠
8、矩阵的基本性质很难计算,为了更好的处理这个问题矩阵分块的思想应运而生 行列式在代数学中是一个非常重要、又应用广泛的概念对行列式的研究重在计算,但由于行列式的计算灵活、技巧性强,尤其是计算高阶行列式往往较为困难行列式的计算通常要根据行列式的具体特点采用相应的计算方法,有时甚至需要将几种方法交叉运用,而且一题多种解法的情况很多,好的方法能极大降低计算量,因此行列式计算方法往往灵活多变在解决行列式的某些问题时,对于级数较高的行列式,常采用分块的方法,将行列式分成若干子块,往往可以使行列式的结构清晰,计算简化本文在广泛阅读文献的基础上,从温习分块矩阵的定义和性质出发,给出了分块矩阵的一些重要结论并予以
9、证明,在此基础上讨论利用分块矩阵计算行列式的方法,并与其他方法相互比较,以此说明分块矩阵在行列式计算中的优势1 分块矩阵的概念1.1 分块矩阵的定义有时候,我们将一个大矩阵看成是由一些小矩阵组成的,就如矩阵是由数组成的一样特别在运算中,把这些小矩阵当做数一样来处理这就是所谓的矩阵的分块把原矩阵分别按照横竖需要分割成若干小块,每一小块称为矩阵的一个子块或子矩阵,则原矩阵是以这些子块为元素的分块矩阵这是处理级数较高的矩阵时常用的方法定义1 设是矩阵,将的行分割为段,每段分别包含行,将的列分割为段,每段包含列,则,就称为分块矩阵,其中是矩阵()注:分块矩阵的每一行(列)的小矩阵有相同的行(列)数 例
10、如,对矩阵分块,其中,1.2 分块矩阵的运算进行分块矩阵的加、减、乘法与转置运算时,可将子矩阵当做通常矩阵的元素看待加法运算 设和为同型矩阵(行数和列数分别相等),若用相同的分块方法,即,其中、是矩阵,且,则与可直接相加,即数乘运算 设分块矩阵,为任意数,则分块矩阵与的数乘为乘法运算 一般地说,设,将矩阵、分块,其中每个是小矩阵,每个是小矩阵,于是有,其中是矩阵,应该注意,在进行乘法运算求乘积时,对矩阵、分块要求,矩阵的列的分法必须与矩阵的行的分法一致矩阵的乘法不适合交换律,即一般来说,没有分块矩阵是一类特殊的矩阵,它的乘法同样不适合交换律根据上文所述分块矩阵也是一个矩阵,因此有与一般矩阵的加
11、法、数乘、乘法的运算性质相同不过,分块矩阵运算时应注意以下几点:(1) 进行加法运算时,对应子块的结构需相同;(2) 进行数乘运算时,必须对每一子块都乘以相同的数;(3) 进行乘法运算时,不能随意交换两个相乘子块的顺序在具体运算过程中,我们要灵活地分块,目的是使运算更简便而对于乘法,在矩阵与矩阵相乘时,对的一个分块方式,可以有几种分块方式都可与相乘,同样对的一个分块方式,也是如此但不论怎样分块,始终坚持相乘的两个矩阵前一个矩阵列的分法与后一个矩阵行的分法一致,因为只有这样乘积才有意义例如,已知,我们把分块为,其中为二阶单位阵,这时若只考虑乘法的相容性,可以分块为、或,我们可以看到第一种分法中有
12、单位块,而,对于乘法运算显然更加简便,即设是一个分块矩阵,那么它的转置为分块矩阵的转置应遵守如下规则:(1) 的每一块都看成元素,对转置;(2) 对的每一块都转置1.3 特殊的分块矩阵 形式如的矩阵,其中是矩阵,通常称为准对角矩阵准对角矩阵具有如下性质:(1) 设 ,则有;(2) 可逆可逆,且;(3) 对于两个有相同分块的准对角矩阵,如果它们相应的分块是同级的,那么显然有,它们还是准对角矩阵2 分块矩阵的初等变换与普通矩阵的初等变换类似,分块矩阵的初等变换有三种:(1) 互换分块矩阵二个块行(列)的位置;(2) 用一个可逆矩阵左乘(右乘)分块矩阵的某一块行(列);(3) 将分块矩阵某一块行(列
13、)的(矩阵)倍加到另一块行(列)定义2 由单位矩阵经过一次初等变换得到的矩阵称为初等矩阵现将某个单位矩阵如下进行分块,对它进行两行(列)对换;矩阵的某行(列)乘以行列可逆阵;某一行(列)乘以矩阵加到另一行(列)上,就可得到如下三种分块初等矩阵:(1) 分块初等对换阵;(2) 分块初等倍乘阵,;(3) 分块初等倍加阵,与初等矩阵和初等变换的关系一样,用上面这些矩阵左乘任一个分块矩阵,只要分块乘法能够进行,其结果就等于对它进行相应的初等变换:(1) ;(2) ;(3) 同样,用它们右乘任一矩阵,也有相应的结果我们通过验证,当用分块初等矩阵左乘(右乘)一个分块矩阵,就相当于对该分块矩阵作了一次相应的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分块 矩阵 行列式 计算 中的 应用
链接地址:https://www.31ppt.com/p-4194805.html