Fluent流体UDF中文教程.word板.doc
《Fluent流体UDF中文教程.word板.doc》由会员分享,可在线阅读,更多相关《Fluent流体UDF中文教程.word板.doc(110页珍藏版)》请在三一办公上搜索。
1、第四章 DEFINE宏本章介绍了Fluent公司所提供的预定义宏,我们需要用这些预定义宏来定义UDF。在这里这些宏就是指DEFINE宏。本章由如下几节组成: 4.1 概述 4.2 通用解算器DEFINE宏 4.3 模型指定DEFINE宏 4.4 多相DEFINE宏 4.5 离散相模型DEFINE宏4.1 概述DEFINE宏一般分为如下四类: 通用解算器 模型指定 多相 离散相模型(DPM) 对于本章所列出的每一个DEFINE宏,本章都提供了使用该宏的源代码的例子。很多例子广泛的使用了其它章节讨论的宏,如解算器读取(第五章)和utilities (Chapter 6)。需要注意的是,并不是本章所
2、有的例子都是可以在FLUENT中执行的完整的函数。这些例子只是演示一下如何使用宏。除了离散相模型DEFINE宏之外的所有宏的定义都包含在udf.h文件中。离散相模型DEFINE宏的定义包含在dpm.h文件中。为了方便大家,所有的定义都列于附录A中。其实udf.h头文件已经包含了dpm.h文件,所以在你的UDF源代码中就不必包含dpm.h文件了。注意:在你的源代码中,DEFINE宏的所有参变量必须在同一行,如果将DEFINE声明分为几行就会导致编译错误。4.2 通用解算器DEFINE宏本节所介绍的DEFINE宏执行了FLUENT中模型相关的通用解算器函数。表 4.2.1提供了FLUENT中DEF
3、INE宏,以及这些宏定义的功能和激活这些宏的面板的快速参考向导。每一个DEFINE宏的定义都在udf.h头文件中,具体可以参考附录A。 DEFINE_ADJUST (4.2.1节) DEFINE_INIT (4.2.2节) DEFINE_ON_DEMAND (4.2.3节) DEFINE_RW_FILE (4.2.4节) 表4.2.1:通用解算器DEFINE宏的快速参考向导功能DEFINE宏激活该宏的面板处理变量DEFINE_ADJUSTUser-Defined Function Hooks初始化变量DEFINE_INITUser-Defined Function Hooks异步执行DEFIN
4、E_ON_DEMANDExecute On Demand读写变量到DEFINE_RW_FILEUser-Defined Function HooksCase和data文件 4.2.1 DEFINE_ADJUST 4.2.2 DEFINE_INIT 4.2.3 DEFINE_ON_DEMAND 4.2.4 DEFINE_RW_FILE 4.2.1 DEFINE_ADJUST 功能和使用方法的介绍 DEFINE_ADJUST是一个用于调节和修改FLUENT变量的通用宏。例如,你可以用DEFINE_ADJUST来修改流动变量(如:速度,压力)并计算积分。你可以用它来对某一标量在整个流场上积分,然后在
5、该结果的基础上调节边界条件。在每一步迭代中都可以执行用DEFINE_ADJUST定义的宏,并在解输运方程之前的每一步迭代中调用它。参考图3.3.1 和3.3.2 for可以大致了解一下当DEFINE_ADJUST被调用时FLUENT解的过程宏DEFINE_ADJUST ( name, d)参变量类型Domain *d返回的功能voidDEFINE_ADJUST有两个参变量:name和d。name是你所指定的UDF的名字。当你的UDF编译并连接时,你的FLUENT图形用户界面就会显示这个名字,此时你就可以选择它了。d是FLUENT解算器传给你的UDF的变量。D是一个指向区域的指针,调节函数被应用
6、于这个区域上。区域变量提供了存取网格中所有单元和表面的线程。对于多相流,由解算器传给函数的区域指针是混合层区域指针。DEFINE_ADJUST函数不返回任何值给解算器。例子1下面的UDF名字是adjust,它使用DEFINE_ADJUST对湍流耗散在整个区域上积分。然后这个值会打印在控制台窗口中。每一步迭代都会调用这个UDF。它可以作为解释程序或者编译后的UDF在FLUENT中执行。/*/* 积分湍流耗散并将其打印到控制台窗口的UDF */*/#include udf.hDEFINE_ADJUST(my_adjust, d) Thread *t; /* Integrate dissipatio
7、n. */ real sum_diss=0.; cell_t c; thread_loop_c (t,d) begin_c_loop (c,t) sum_diss += C_D(c,t)* C_VOLUME(c,t); end_c_loop (c,t) printf(Volume integral of turbulent dissipation: %gn, sum_diss);例子: 2 下面UDF的名字是adjust_fcn,它用DEFINE_ADJUST指定了某一自定义标量是另一自定义标量的梯度的函数。该函数在每一次迭代中都会被调用。它可以作为编译后的UDF在FLUENT中执行。 /*/
8、* UDF for defining user-defined scalars and their gradients */*/#include udf.hDEFINE_ADJUST(adjust_fcn, d) Thread *t; cell_t c; real K_EL = 1.0; /* Do nothing if gradient isnt allocated yet. */ if (! Data_Valid_P() return; thread_loop_c (t, d) if (FLUID_THREAD_P(t) begin_c_loop_all (c,t) C_UDSI(c,t,
9、1) += K_EL*NV_MAG2(C_UDSI_G(c,t,0)*C_VOLUME(c,t); end_c_loop_all (c, t) Activating an Adjust UDF in FLUENT 在为adjust UDF的源代码进行编译和连接之后,你可以在FLUENT中的User-Defined Function Hooks 面板激活这个函数。更详细的内容请参阅8.1.1节。4.2.2 DEFINE_INIT 功能和使用方法的介绍 你可以用DEFINE_INIT宏来定义一组解的初始值。DEFINE_INIT 完成和修补一样的功能,只是它以另一种方式UDF来完成。每一次初始化时
10、DEFINE_INIT函数都会被执行一次,并在解算器完成默认的初始化之后立即被调用。因为它是在流场初始化之后被调用的,所以它最常用于设定流动变量的初值。参考图3.3.1和3.3.2关于FLUENT解过程的介绍可以看出什么时候调用DEFINE_INIT函数。Macro:DEFINE_INIT ( name, d)Argument types:Domain *dFunction returns:voidDEFINE_INIT有两个参变量:name和d。name是你所指定的UDF的名字。当你的UDF编译并连接时,你的FLUENT图形用户界面就会显示这个名字,此时你就可以选择它了。d是FLUENT解算
11、器传给你的UDF的变量。d is a pointer to the domain over which the initialization function is to be applied. The domain argument provides access to all cell and face threads in the mesh. For multiphase flows, the domain pointer that is passed to the function by the solver is the mixture-level domain pointer. A
12、 DEFINE_INIT function does not return a value to the solver. 例子下面的UDF名字是my_init_func,它在某一个解中初始化了流动变量。在解过程开始时它被执行了一次。它可以作为解释程序或者编译后的UDF在FLUENT中执行。/*/* UDF for initializing flow field variables */*/#include udf.hDEFINE_INIT(my_init_function, domain) cell_t c; Thread *t; real xcND_ND; /* loop over all
13、cell threads in the domain */ thread_loop_c (t,domain) /* loop over all cells */ begin_c_loop_all (c,t) C_CENTROID(xc,c,t); if (sqrt(ND_SUM(pow(xc0 - 0.5,2.), pow(xc1 - 0.5,2.), pow(xc2 - 0.5,2.) 0.25) C_T(c,t) = 400.; else C_T(c,t) = 300.; end_c_loop_all (c,t) The macro ND_SUM(a, b, c) that is used
14、 in the UDF computes the sum of the first two arguments (2D) or all three arguments (3D). It is useful for writing functions involving vector operations so that the same function can be used for 2D and 3D. For a 2D case, the third argument is ignored. See Chapter 5 for a description of predefined so
15、lver access macros (e.g., C_CENTROID) and Chapter 6 for utility macros (e.g., ND_SUM). Activating an Initialization UDF in FLUENT 编译并连接UDF源代码之后。you can activate the function in the User-Defined Function Hooks panel in FLUENT. See Section 8.1.2 for more details. 4.2.3 DEFINE_ON_DEMAND 功能和使用方法的介绍 你可以使
16、用DEFINE_ON_DEMAND macro to define a UDF to execute on demand in FLUENT, rather than having FLUENT call it automatically during the calculation. Your UDF will be executed immediately, once it is activated, but it is not accessible while the solver is iterating. Note that the domain pointer d is not e
17、xplicitly passed as an argument to DEFINE_ON_DEMAND. Therefore, if you want to use the domain variable in your on-demand function, you will need to first retrieve it using the Get_Domain utility provided by Fluent (shown in 例子: below). See Section 6.5.1 for details on Get_Domain. Macro:DEFINE_ON_DEM
18、AND ( name)Argument types:noneFunction returns:voidThere is only one argument to DEFINE_ON_DEMAND: name. name is the name of the UDF, specified by you. 当你的UDF编译和连接时,你为函数所选择的名字会在FLUENT图形用户界面中变得可见,且可被选择。 A DEFINE_ON_DEMAND function does not return a value to the solver. 例子: 下面的UDF名字为demand_calc,计算并打印出
19、当前数据场的最小、最大和平均温度。It then computes a temperature function and stores it in user-defined memory location 0 (which is allocated as described in Section 6.7). Once you execute the UDF (as described in Section 8.1.3), the field values for f( T) will be available in the drop-down lists in postprocessing p
20、anels in FLUENT. You can select this field by choosing udm-0 in the User Defined Memory. category. If you write a data file after executing the UDF, the user-defined memory field will be saved to the data file. The UDF can be executed as an interpreted or compiled UDF in FLUENT. /*/ /* UDF to calcul
21、ate temperature field function and store in */* user-defined memory. Also print min, max, avg temperatures. */ /*/#include udf.hDEFINE_ON_DEMAND(on_demand_calc)Domain *d; /* declare domain pointer since it is not passed a */ /* argument to DEFINE macro */ real tavg = 0.; real tmax = 0.; real tmin =
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Fluent 流体 UDF 中文 教程 word
链接地址:https://www.31ppt.com/p-4194784.html