塑性力学.doc
《塑性力学.doc》由会员分享,可在线阅读,更多相关《塑性力学.doc(13页珍藏版)》请在三一办公上搜索。
1、塑性力学suxing lixue塑性力学plasticity 的一个分支,研究物体超过弹性极限后所产生的永久变形和作用力之间的关系以及物体内部和的分布规律。和的区别在于,塑性力学考虑物体内产生的永久变形,而弹性力学不考虑;和的区别在于,塑性力学考虑的永久变形只与应力和应变的历史有关而不随时间变化,而流变学考虑的永久变形与时间有关。 塑性力学理论在工程实际中有广泛的应用。例如用于研究如何发挥材料的潜力,如何利用材料的塑性性质,以便合理选材,制定加工成型工艺。塑性力学理论还用于计算残余应力。 基本实验和基本理论对塑性变形基本规律的认识来自实验。从实验中找出在应力超出弹性极限后材料的特性,将这些特性
2、进行归纳并提出合理的假设和简化模型,确定应力超过弹性极限后材料的,从而建立塑性力学的基本方程。解出这些方程,便可得到不同塑性状态下物体内的应力和应变。 基本实验基本实验有两个: 简单拉伸实验对某些材料(如低碳钢)作简单拉伸实验,可得到如图1简单拉伸实验应力-应变曲线所示的应力-应变曲线。实验表明,应力-应变曲线上存在一个称为弹性极限的应力值,若应力小于弹性极限,则加载和卸载的应力-应变曲线相同(段);若应力超过弹性极限,加载的应力-应变曲线有明显的转折,并出现一个水平的线段(),常称为屈服阶段,相应的应力称为屈服极限。弹性极限、屈服极限的值相差不大,在工程上常取为一个值,仍称屈服极限,记为40
3、0-1。材料中的应力达到屈服极限时,材料即进入塑性阶段。此阶段的最大特点是:加载和卸载的应力-应变曲线不同。例如由图1简单拉伸实验应力-应变曲线中点卸载,应力与应变不是沿kg2线而是沿kg2线退回kg2应力全部消失后,仍保留永久应变。实验表明,在变形不大时,多数材料应力-应变曲线中的与接近平行, 以表示塑性应变,表示弹性应变,则点的应变为:。如果从点重新加载,开始时仍沿变化,在回到点后则按kg2kg2变化并产生新的塑性变形。若在kg2卸载至kg2,则再加载时,点的应力成为新的屈服极限,它高于初始屈服极限400-1。这一现象称为应变强化或加工强化。点的应力称为后继屈服极限或加载应力。对于均匀应力
4、状态,外载全部卸除后,宏观应力等于零,但保留了宏观的残余应变。实际上,物体内部微观结构发生了变化,产生了微观的残余应力,它能在下次加载时扩大物体的弹性范围。J.包辛格于1886年发现,在卸载后施加反方向压力时,反向屈服极限降低了。这一现象后称为,它是上述微观残余应力造成的。 由简单应力状态的应力-应变曲线可以看出,塑性力学问题有两个主要特点:一是应力与应变之间的关系是非线性的;二是应力与应变之间的关系不是单值对应的,而与加载历史有关。例如在图1简单拉伸实验应力-应变曲线中,同一应力视加载历史的不同可对应于1、2、3点的应变。 因此塑性力学的问题是从某一已知初始状态开始,随着加载过程,用应力增量
5、与应变增量的关系逐步求出每时刻的增量,累加起来得到物体内的最终应力和应变分布。 静水压力实验实验表明,静水压力可使材料的可塑性增加,原来处于脆性状态的材料可以转化成为塑性材料但静水压力对金属材料的屈服极限影响不大(岩石材料则不同)。平均正应力在几万个大气压以内时,金属材料的体积变化与平均正应力近似成正比。 基本假设为了简化计算,根据实验结果可以建立如下假设:材料是各向同性的和连续的,不考虑断裂。平均正应力不影响材料的屈服,它只与材料的体积应变有关,且体积应变是弹性的。材料的弹性性质不受塑性变形的影响。只考虑稳定材料,即不考虑塑性应变的弱化阶段(图1简单拉伸实验应力-应变曲线中的HK段)。此外,
6、在一般的塑性静力问题中,还假设时间因素对材料的性质没有影响。变形速度、应变率、应力率等概念往往只表示位移、应变、应力的增量,这些增量在多长时间内产生,对分析问题没有影响。以上假设适用于一般金属材料,对于岩土材料则需考虑平均正应力对屈服的影响以及弹塑性耦合问题。 简化模型塑性力学的应力应变曲线通常有如下五种简化模型: 理想弹塑性模型对低碳钢或强化性质不明显的材料,若应变不太大,则可忽略强化因素,而将实际应力-应变曲线(图2理想弹塑性模型中虚线)简化为折线,如图2理想弹塑性模型所示,图中0-1线表示理想弹性,1-2线表示理想塑性。 线性强化弹塑性模型对有显著强化性质的材料,可用两条直线代替实际曲线
7、 (图3线性强化弹塑性模型)。 理想刚塑性模型对弹性应变比塑性应变小得多而且强化性质不明显的材料,可用水平直线代替实际曲线(图4理想刚塑性模型)。 线性强化刚塑性模型对弹性应变比塑性应变小得多而且强化性质明显的材料,可用倾斜直线代替实际曲线(图5线性强化刚塑性模型)。 幂次强化模型为简化计算中的解析式,可用幂次强化模型(图6幂次强化模型),其解析表达式为400-1(/400-1),其中400-1为屈服应力;400-1为与400-1相应的应变;为材料常数。 屈服条件和本构关系在复杂应力状态下,各应力分量成不同组合状况的以及应力分量和应变分量之间的塑性本构关系是塑性力学的主要研究内容,也是分析塑性
8、力学问题时依据的物理关系。 屈服条件是判断材料处于弹性阶段还是处于塑性阶段的判据。对金属材料,最常用的屈服条件有最大剪应力屈服条件(又称特雷斯卡条件)和弹性形变比能屈服条件(又称米泽斯条件)。这两个屈服条件数值接近,它们的数学表达式都不受静水压力的影响,而且基本符合实验结果。对于理想塑性模型,在经过塑性变形后,屈服条件不变。但如果材料具有强化性质,则屈服条件将随塑性变形的发展而改变,改变后的屈服条件称为后继屈服条件或加载条件(见)。 反映塑性应力-应变关系的本构关系,一般应以增量形式给出,这是因为塑性力学中需要考虑变形的历程,而增量形式可以反映出变形的历程,反映塑性变形的本质。用增量形式表示塑
9、性本构关系的理论称为。研究表明,应力和应变的增量关系与屈服条件有关。增量理论的本构关系在理论上是合理的,但应用起来比较麻烦,因为需要积分整个变形路径才能得到最后的结果。因此,在塑性力学中又发展出,即采用全量形式表示塑性本构关系的理论。在单向应力状态下,若限定应力只增不减(即只加载不卸载),则应力全量与应变全量之间就有直接关系,如同非线性弹性关系那样。在复杂应力状态下,若各应力分量按一定比例增长(称为比例加载)而不卸载,则可将增量关系积分得全量关系。但一般情形下,各应力分量之间的比例是有变化的,严格说来,不能得出全量关系。然而全量关系使用方便,因而常用于求解实际问题。研究表明:在偏离比例加载不大
10、时,全量理论的计算结果和实验接近,至于允许偏离的程度,尚无定量的标准。 解决塑性力学的边值问题,所使用的平衡方程、几何方程(即应变和位移的关系)以及力和位移的边界条件都和弹性力学中所使用的相同,但在物理关系上则应以全量理论或增量理论的塑性本构关系代替弹性力学中的广义胡克定律(见)。利用平衡方程、几何方程、物理关系和所有边界条件可以求得超过屈服极限后的应力和应变分布以及内力和外载荷之间的关系。但是塑性力学的本构关系是非线性的,在具体计算边值问题时会遇到一些数学上的困难,因此在塑性力学中还要根据所研究问题的具体情况,找出解决方法。 研究内容除上述基本理论以外,塑性力学还包括以下研究内容: 简单弹塑
11、性问题经过简化只剩下一个独立变量的问题。这类问题有: 的弹塑性弯曲问题如果象处理弹性弯曲问题一样引用,则梁的弹塑性弯曲问题就成为一维问题。在弯矩的作用下,梁截面上的正应力分布为=/,其中为梁纵轴坐标,为截面上的坐标,=0对应于中性轴,为截面绕中性轴的惯性矩。对一个宽为、高为的矩形截面梁,=/12。当最外层纤维的应力达到屈服极限400-1时,作用在截面上的弯矩为弹性极限弯矩=400-1/6。如果弯矩继续增加,则外层纤维首先进入塑性变形阶段,从梁截面上看,塑性变形区随弯矩的增加向中心发展,纯弹性变形区逐渐缩小。在极限情形,弹性区缩小为零。对于理想塑性材料,与极限情形对应的弯矩称为塑性极限弯矩,其值
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 塑性 力学
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-4194042.html