电机学习题解答.doc
《电机学习题解答.doc》由会员分享,可在线阅读,更多相关《电机学习题解答.doc(115页珍藏版)》请在三一办公上搜索。
1、前 言 电机学是一门专业基础课,它涉及电、磁、力多方面的知识,概念性强,难度较大。为配合读者自学,我们编写了这本与全国高等教育自学考试指导委员会编、严震池编著的电机学配套的电机学习题解答。电机学习题量多面广,如果认真习作,既可以深刻地巩固所学的基本概念,又可有效地提高运算能力,还可以培养综合分析的思维方法。我们殷切希望读者一定要刻苦钻研,不能轻易查抄本书的答案,任何削弱独立思考的作法都不是作者的本意。尽管作者十分谨慎,所作解答也并非一定标准,仅供参考而已。如有错误和差错,一经发现恳请指正,不胜感激。本书编者:第一篇 变压器 由张爱军编写第二篇 异步电机 由严震池编写第三篇 同步电机 由赵君有编
2、写第四篇 直流电机 由严震池编写全书由严震池任主编,并统一校对定稿。 作者2001年 7月于沈阳电专第一章 变压器基本工作原理和结构1-1 变压器原副绕组套在同一个铁芯上, 原边接上电源后,流过激磁电流I0, 产生励磁磁动势F0, 在铁芯中产生交变主磁通0, 其频率与电源电压的频率相同, 根据电磁感应定律,原副边因交链该磁通而分别产生同频率的感应电动势 e1和e2Page: 1, 且有 , , 显然,由于原副边匝数不等, 即N1N2,原副边的感应电动势也就不等, 即e1e2, 而绕组的电压近似等于绕组电动势,即U1E1, U2E2,故原副边电压不等,即U1U2, 但频率相等。1-2 由, ,
3、可知 , , 所以变压器原、副两边每匝感应电动势相等。 又U1 E1, U2E2 , 因此, 当U1 不变时,若N1减少, 则每匝电压增大,所以将增大。或者根据, 若 N1减小,则增大, 又, 故U2增大。1-3 不会。因为接直流电源,稳定的直流电流在铁心中产生恒定不变的磁通,磁通的变化率为零,不会在绕组中产生感应电动势。1-4 铁心: 构成变压器的磁路,同时又起着器身的骨架作用。绕组: 构成变压器的电路,它是变压器输入和输出电能的电气回路。分接开关: 变压器为了调压而在高压绕组引出分接头,分接开关用以切换分接头,从而实现变压器调压。油箱和冷却装置: 油箱容纳器身,盛变压器油,兼有散热冷却作用
4、。绝缘套管: 变压器绕组引线需借助于绝缘套管与外电路连接,使带电的绕组引线与接地的油箱绝缘。1-5变压器二次额定电压U2N是指变压器一次侧加额定电压,二次侧空载时的端电压。1-6 一次绕组的额定电流 二次绕组的额定电流 1-7 1. 一、二次侧额定电压 一次侧额定电流(线电流) 二次侧额定电流(线电流)2. 由于YN,d接线一次绕组的额定电压 U1N= 一次绕组的额定电流 二次绕组的额定电压二次绕组的额定电流I2N= 第二章 单相变压器运行原理和运行特性2-1 由于磁通所经路径不同,把磁通分成主磁通和漏磁通,便于分别考虑它们各自 的特性,从而把非线性问题和线性问题分别予以处理 区别:1. 在路
5、径上,主磁通经过铁心磁路闭合,而漏磁通经过非铁磁性物质 磁路闭合。 2在数量上,主磁通约占总磁通的99%以上,而漏磁通却不足1%。 3在性质上,主磁通磁路饱和,0与I0呈非线性关系,而漏磁通 磁路不饱和,1与I1呈线性关系。 4在作用上,主磁通在二次绕组感应电动势,接上负载就有电能输出, 起传递能量的媒介作用,而漏磁通仅在本绕组感应电动势,只起了漏抗压降的作用。 空载时,有主磁通和一次绕组漏磁通,它们均由一次侧磁动势激励。 负载时有主磁通,一次绕组漏磁通,二次绕组漏磁通。主磁通 由一次绕组和二次绕组的合成磁动势即激励,一次绕组漏磁通由一次绕组磁动势激励,二次绕组漏磁通由二次绕组磁动势 激励 .
6、2-2 作用:变压器空载电流的绝大部分用来供励磁,即产生主磁通,另有很小一部分用来供给变压器铁心损耗,前者属无功性质,称为空载电流的无功分量,后者属有功性质,称为空载电流的有功分量。 性质:由于变压器空载电流的无功分量总是远远大于有功分量,故空载电流属感性无功性质,它使电网的功率因数降低,输送有功功率减小。 大小:由磁路欧姆定律,和磁化曲线可知,I0 的大小与主磁通0, 绕组匝数N及磁路磁阻Rm有关。就变压器来说,根据,可知, 因此,m由电源电压U1的大小和频率f以及绕组匝数N1来决定。 根据磁阻表达式可知,与磁路结构尺寸有关,还与导磁材料的磁导率有关。变压器铁芯是铁磁材料,随磁路饱和程度的增
7、加而减小,因此随磁路饱和程度的增加而增大。 综上,变压器空载电流的大小与电源电压的大小和频率,绕组匝数,铁心尺寸及磁路的饱和程度有关。2-3 要从电网取得功率,供给变压器本身功率损耗,它转化成热能散逸到周围介质中。小负荷用户使用大容量变压器时,在经济、技术两方面都不合理。对电网来说,由于变压器容量大,励磁电流较大,而负荷小,电流负载分量小,使电网功率因数降低,输送有功功率能力下降,对用户来说 ,投资增大,空载损耗也较大,变压器效率低。2-4 变压器设计时,工作磁密选择在磁化曲线的膝点(从不饱和状态进入饱和状态的拐点),也就是说,变压器在额定电压下工作时,磁路是较为饱和的。 高压侧加220V ,
8、磁密为设计值,磁路饱和,根据磁化曲线,当磁路饱和时,励磁电流增加的幅度比磁通大,所以空载电流呈尖顶波。 高压侧加110V ,磁密小,低于设计值,磁路不饱和,根据磁化曲线,当磁路不饱和时, 励磁电流与磁通几乎成正比,所以空载电流呈正弦波。 低压侧加110V ,与高压侧加220V相同, 磁密为设计值, 磁路饱和,空载电流呈尖顶波。2-5 励磁电抗对应于主磁通,漏电抗对应于漏磁通,对于制成的变压器,励磁电抗不是常数,它随磁路的饱和程度而变化,漏电抗在频率一定时是常数。 电源电压降至额定值一半时,根据可知,于是主磁通减小,磁路饱和程度降低,磁导率增大,磁阻减小, 导致电感增大,励磁电抗也增大。但是漏磁
9、通路径是线性磁路, 磁导率是常数,因此漏电抗不变。 由可知,励磁电抗越大越好,从而可降低空载电流。漏电抗则要根据变压器不同的使用场合来考虑。对于送电变压器,为了限制短路电流和短路时的电磁力,保证设备安全,希望漏电抗较大;对于配电变压器,为了降低电压变化率: ,减小电压波动,保证供电质量,希望漏电抗较小。励磁电抗对应铁心磁路,其磁导率远远大于漏磁路的磁导率,因此,励磁电抗远大于漏电抗。 26 因为存在感应电动势E1, 根据电动势方程: 可知,尽管很小,但由于励磁阻抗很大,所以不大.如果接直流电源,由于磁通恒定不变,绕组中不感应电动势,即,因此电压全部降在电阻上,即有 ,因为很小,所以电流很大。2
10、7 根据可知,由于电压增高,主磁通将增大,磁密将增大, 磁路过于饱和,根据磁化曲线的饱和特性,磁导率降低,磁阻 增大。于是,根据磁路欧姆定律可知,产生该磁通的励磁电流必显著增大。再由铁耗可知,由于磁密增大,导致铁耗增大,铜损耗也显著增大,变压器发热严重, 可能损坏变压器。28不能。根据可知,由于匝数太少,主磁通 剧增,磁密过大,磁路过于饱和,磁导率降低,磁阻 增大。于是,根据磁路欧姆定律可知, 产生该磁通的激磁电流必将大增。再由可知,磁密过大, 导致铁耗大增, 铜损耗也显著增大,变压器发热严重,可能损坏变压器。29 根据可知,电源电压不变,从60Hz降低到50Hz后,频率下降到原来的(1/1.
11、2),主磁通将增大到原来的1.2倍,磁密也将增大到原来的1.2倍, 磁路饱和程度增加, 磁导率降低, 磁阻 增大。于是,根据磁路欧姆定律可知, 产生该磁通的激磁电流必将增大。 再由讨论铁损耗的变化情况。 60Hz时, 50Hz时, 因为,所以铁损耗增加了。 漏电抗,因为频率下降,所以原边漏电抗 ,副边漏电抗 减小。又由电压变化率表达式 可知,电压变化率将随,的减小而减小。2-10 根据可知,因此,电源电压降低,主磁通将减小,磁密,因不变,将随的减小而减小,铁心饱和程度降低,磁导率增大。因为磁阻,所以磁阻减小。根据磁路欧姆定律,磁动势将减小,当线圈匝数不变时,励磁电流减小。又由于铁心损耗,所以铁
12、心损耗减小。 励磁阻抗增大,原因如下。 电感, 励磁电抗,因为磁阻 减小,所以增大。 设降压前后磁通分别为、,磁密分别为、,电流分别为、, 磁阻分别为、,铁心损耗分别为、。根据以上讨论再设, ,同理, 于是, 。又由于, 且是励磁电阻,不是磁阻),所以, 即 ,于是,因,故,显然,励磁电阻将增大。励磁阻抗 ,它将随着的增大而增大。简单说:由于磁路的饱和特性,磁密降低的程度比励磁电流小,而铁耗 =,由于铁耗降低得少,而电流降低得大,所以励磁电阻增大。2-11 (1)这种情况相当于铁心截面S减小,根据可知,,因此,电源电压不变,磁通将不变,但磁密,减小,将增大,铁心饱和程度增加,磁导率减小。因为磁
13、阻,所以磁阻增大。根据磁路欧姆定律,当线圈匝数不变时,励磁电流将增大。又由于铁心损耗,所以铁心损耗增加。顺便讨论一下励磁阻抗的变化情况(题中无要求)。 电感,励磁电抗,因为磁阻 增大,所以励磁电抗减小。 设变化前后磁通分别为、,磁密分别为、,电流分别 为、, 磁阻分别为、,铁心损耗分别为、。 根据以上讨论再设,同理, ,于是, 。又由于 ,且是励磁电阻,不是磁阻),所以 ,即 ,于 是, ,因, 故,显然,励磁电阻减小。励磁阻抗,它将随着的减小而减小。 (2)这种情况相当于磁路上增加气隙,磁导率下降,从而使磁阻增大。 根据可知,,故不变,磁密也不变,铁心饱和程度不变。又由于,故铁损耗不变。根据
14、磁路欧姆定律可知,磁动势将增大,当线圈匝数不变时,励磁电流将增大。 励磁阻抗减小,原因如下: 电感, 激磁电抗,因为 磁阻 增大,所以励磁电抗减小。 已经推得铁损耗不变,励磁电流增大,根据是励磁电阻,不是磁阻)可知,励磁电阻减小。励磁阻抗,它将随着 的减小而减小。 (3)由于绝缘损坏,使涡流增加,涡流损耗也增加,铁损耗增大。根据可知,,故不变,磁密也不变,铁心饱和程度不变。但是,涡流的存在相当于二次绕组流过电流,它增加使原绕组中与之平衡的电流分量也增加,因此励磁电流增大,铁损耗增大。再由可知,增加,励磁阻抗必减小。2-12 根据可知,因此,一次绕组匝数减少,主磁通将 增加,磁密,因不变,将随的
15、增加而增加,铁心饱和程度增加,磁导率下降。因为磁阻,所以磁阻增大。根据磁路欧姆定律 ,当线圈匝数减少时,励磁电流增大。 又由于铁心损耗,所以铁心损耗增加。 励磁阻抗减小,原因如下。 电感, 激磁电抗,因为磁阻 增大,匝数减少,所以励磁电抗减小。 设减少匝数前后匝数分别为、,磁通分别为、,磁密分别为 、,电流分别为、,磁阻分别为、,铁心损耗分别为, 。根据以上讨论再设,同理, ,于是 。又由于, 且是励磁电阻,不是磁阻),所以,即 ,于是,因,故,显然, 励磁电阻减小。励磁阻抗 ,它将随着的减小而减小。 2-13 一次绕组有主电动势,漏感电动势,一次绕组电阻压降,主电动势由主磁通交变产生,漏感电
16、动势由一次绕组漏磁通交变产生。一次绕组电动势平衡方程为;二次绕组有主电动势,漏感电动势,二次绕组电阻压降,主电动势由主磁通 交变产生,漏感电动势由二次绕组漏磁通交变产生,二次绕组电动势平衡方程为。 2-14 空载时的励磁磁动势只有一次侧磁动势,负载时的励磁磁动势是一次侧和二次侧的合成磁动势,即,也就是。2-15 “T”形等效电路r1 x1r2 x2 rmxm r1 ,x1一次侧绕组电阻,漏抗 r2, x2 二次侧绕组电阻,漏抗折算到一次侧的值rm , x m励磁电阻,励磁电抗r1 x1r2 x2 rmxm近似等效电路: rk = r1 +r2 -短路电阻 xk= x1 +x2 -短路电抗 rm
17、 , x m-励磁电阻,励磁电抗rK xK简化等效电路 rk,xk-短路电阻,短路电抗2-16 两种简化相量图为:图(a)为带阻感性负载时相量图,(b)为带阻容性负载时相量图。从相量图可见,变压器带阻感性负载时,二次端电压下降(),带阻容性负载时,端电压上升()。 (a) (b)217 低压侧额定电压小,为了试验安全和选择仪表方便,空载试验一般在低压侧进行。 以下讨论规定高压侧各物理量下标为1,低压侧各物理量下标为2。空载试验无论在哪侧做,电压均加到额定值。根据可知,; ,故,即。因此无论在哪侧做,主磁通不变,铁心饱和程度不变,磁导率不变,磁阻 不变。 根据磁路欧姆定律可知,在、不变时, 无论
18、在哪侧做,励磁磁动势都一样,即,因此, 则,显然分别在高低压侧做变压器空载试验,空载电流不等,低压侧空载电流是高压侧空载电流的K倍。 空载电流百分值, , 由于, 所以= ,空载电流百分值相等。 空载功率大约等于铁心损耗,又根据,因为无论在哪侧做主磁通都相同,磁密不变,所以铁损耗基本不变,空载功率基本相等。 励磁阻抗,由于,所以 ,高压侧励磁阻抗是低压侧励磁阻抗的倍。 不能换算。因为磁路为铁磁材料,具有饱和特性。磁阻随饱和程度不同而变化, 阻抗不是常数,所以不能换算。由于变压器工作电压基本为额定电压,所以测量 空载参数时,电压应加到额定值进行试验,从而保证所得数据与实际一致。218 高压侧电流
19、小,短路试验时所加电压低,为了选择仪表方便,短路试验一般在高压侧进行。 以下讨论规定高压侧各物理量下标为1,低压侧各物理量下标为2。电源加在高压侧,当电流达到额定值时,短路阻抗为 ,铜损耗为,短路电压,短路电压百分值为 电源加在低压侧,当电流达到额定值时,短路阻抗为 ,铜损耗为,短路电压,短路电压百分值为, 根据折算有,因此短路电阻,短路电抗, 所以高压侧短路电阻、短路电抗分别是低压侧短路电阻、短路电抗的倍。 于是,高压侧短路阻抗也是低压侧 短路阻抗的倍; 由推得,高压侧短路损耗与低压侧短路损耗相等; 而且,高压侧短路电压是低压侧短路电压的K倍; 再由推得,高压侧短路电压的百分值值与低压侧短路
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电机 习题 解答

链接地址:https://www.31ppt.com/p-4191430.html