黄金分割.doc
《黄金分割.doc》由会员分享,可在线阅读,更多相关《黄金分割.doc(20页珍藏版)》请在三一办公上搜索。
1、黄金分割 百科名片 黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为10.618或1.6181,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。目录发现历史 简介 概念 发现算路率 简介 欧洲 亚洲记载详细内容 黄金分割数是无限不循环小数 黄金分割三角形 黄金矩形 黄金分割线 黄金分割点 斐波那契数列与黄金分割 无穷连分数、无穷套根式与黄金数 线段的黄金分割(尺规作图)美学应用 黄金分割与美感 黄金分割与艺术创作 黄金分割与建筑艺术 人体美
2、学中的黄金分割 分析 人体画像中的同身方法生活应用 在学术界的应用 其他方面的应用自然生活应用 黄金分割与植物 优选法 黄金分割与作息制度 黄金分割与医学在股市中的应用 概要 黄金分割线的应用 黄金分割线买卖股票须解决三大问题 黄金分割线买卖股票方法 黄金分割线买卖基本法则 黄金线五段买卖法则 计算方法 分析软件上的做法 实战案例黄金分割与战争 概念 0.618与武器装备 0.618与战术布阵 0.618与拿破仑大帝战败发现历史简介 概念 发现算路率 简介 欧洲 亚洲记载详细内容 黄金分割数是无限不循环小数 黄金分割三角形 黄金矩形 黄金分割线 黄金分割点 斐波那契数列与黄金分割 无穷连分数、
3、无穷套根式与黄金数 线段的黄金分割(尺规作图)美学应用 黄金分割与美感 黄金分割与艺术创作 黄金分割与建筑艺术 人体美学中的黄金分割 分析 人体画像中的同身方法生活应用 在学术界的应用 其他方面的应用自然生活应用 黄金分割与植物 优选法 黄金分割与作息制度 黄金分割与医学在股市中的应用 概要 黄金分割线的应用 黄金分割线买卖股票须解决三大问题 黄金分割线买卖股票方法 黄金分割线买卖基本法则 黄金线五段买卖法则 计算方法 分析软件上的做法 实战案例黄金分割与战争 概念 0.618与武器装备 0.618与战术布阵 0.618与拿破仑大帝战败展开编辑本段发现历史是由于公元前6世纪古希腊的毕达哥拉斯学
4、派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。他认为所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波那契数列1,1,2,3,5,8,13,21,.后二数之比2/3,3/5,5/8,8/13,13/21,.近似值的。 黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为金法,17世纪欧洲的一位数学家,甚至称它为各种算法中最可宝贵的算法。这种算法在印度
5、称之为三率法或三数法则,也就是我们现在常说的比例方法。 公元前300年前后欧几里得撰写几何原本时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 其实有关黄金分割,我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。
6、最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代由华罗庚提倡在中国推广。 编辑本段简介概念把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是(5-1)/2,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽柔和,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:10.6181.618 (1-0.618)0.6180.618 这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。 黄金分
7、割发现关于黄金分割比例的起源大多认为来自毕达哥拉斯,据说在古希腊,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。他发现铁匠打铁节奏很有规律,这个声音的比例被毕达哥拉斯用数理的方式表达出来。被应用在很多领域,后来很多人专门研究过,开普勒称其为“神圣分割”也有人称其为“金法”。在金字塔建成1000年后才出现毕达哥拉斯定律,可见这很早就存在。只是不知这个谜底。 编辑本段算路率简介理笔录百算分制胜法规律计策,观测远古的几轮计算,黄金轮算法不一样数字,论发展发现史,由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉
8、斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写几何原本时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。 欧洲2000多
9、年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分(长的一部分)对于全部之比,等于另一部分(短的一部分)对于该部分之比。而计算黄金分割最简单的方法,是计算菲波那契数列1,1,2,3,5,8,13,21,34后二数之比2/3,3/5,5/8,8/13,13/21,21/34近似值的。 黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最可宝贵的算法”。这种算法在印度称之为“三率法”或“三数法则”,也就是我们现在常说的比例方法。 亚洲记载其实有关
10、“黄金分割”,我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证,欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 编辑本段详细内容黄金分割数是无限不循环小数a b a:b=(a+b):a 通常用希腊字母表示这个值。 黄金分割奇妙之处,在于其比例与其倒数是一样的。例如:1.618的倒数是0.618,而1.618:1与1:0.618是一样的。 确切值为(5-1)/2 (x2+x-1=0的一个根) 黄金分割数前面的2000位为: 0.6180339887 4989484820 4586834365 6381177203 0917
11、980576 2862135448 6227052604 6281890244 9707207204 1893911374 8475408807 5386891752 1266338622 2353693179 3180060766 7263544333 8908659593 9582905638 3226613199 2829026788 0675208766 8925017116 9620703222 1043216269 5486262963 1361443814 9758701220 3408058879 5445474924 6185695364 8644492410 4432077
12、134 4947049565 8467885098 7433944221 2544877066 4780915884 6074998871 2400765217 0575179788 3416625624 9407589069 7040002812 1042762177 1117778053 1531714101 1704666599 1466979873 1761356006 7087480710 1317952368 9427521948 4353056783 0022878569 9782977834 7845878228 9110976250 0302696156 1700250464
13、 3382437764 8610283831 2683303724 2926752631 1653392473 1671112115 8818638513 3162038400 5222165791 2866752946 5490681131 7159934323 5973494985 0904094762 1322298101 7261070596 1164562990 9816290555 2085247903 5240602017 2799747175 3427775927 7862561943 2082750513 1218156285 5122248093 9471234145 17
14、02237358 0577278616 0086883829 5230459264 7878017889 9219902707 7690389532 1968198615 1437803149 9741106926 0886742962 2675756052 3172777520 3536139362 1076738937 6455606060 5921658946 6759551900 4005559089 5022953094 2312482355 2122124154 4400647034 0565734797 6639723949 4994658457 8873039623 09037
15、50339 9385621024 3690285138 6804145779 9569812244 5747178034 1731264532 2041639723 2134044449 4873023154 1767689375 2103068737 8803441700 9395440962 7955898678 7232095124 2689355730 9704509595 6844017555 1988192180 2064052905 5189349475 9260073485 2282101088 1946445442 2231889131 9294689622 00230144
16、37 7026992300 7803085261 1807545192 8877050210 9684249362 7135925187 6077788466 5836150238 9134933331 2231053392 3213624319 2637289106 7050339928 2265263556 2090297986 4247275977 2565508615 4875435748 2647181414 5127000602 3890162077 7322449943 5308899909 5016803281 1219432048 1964387675 8633147985
17、7191139781 5397807476 1507722117 5082694586 3932045652 0989698555 6781410696 8372884058 7461033781 0544439094 3683583581 3811311689 9385557697 5484149144 5341509129 5407005019 4775486163 0754226417 2939468036 7319805861 8339183285 9913039607 2014455950 4497792120 7612478564 5916160837 0594987860 069
18、7018940 9886400764 4361709334 1727091914 33650137 黄金分割三角形正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。 黄金分割三角形有一个特殊性,所有的三角形都可以用四个与其本身全等的三角形来生成与其本身相似的三角形,但黄金分割三角形是唯一一种可以用5个而不是4个与其本身全等的三角形来生成与其本身相似的三角形的三角形。 由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。 黄金分割黄金矩形若矩形的宽与长的比等于(5-1)/20.618,那么这个矩形称为黄金矩形 黄金分割线由黄金分割点联想到“黄金分割线”,并类似地给出“
19、黄金分割线”的定义:直线L将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果S1=S2,那么称直线L为该图形的黄金分割线。 黄金分割点黄金分割点是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。 利用线段上的两个黄金分割点,可以作出正五角星,正五边形等。 做黄金分割的一种方法设一条线段AB的长度为a,C点在靠近B点的黄金分割点上且AC为b AC/AB=BC/AC b2=a(a-b) b2=a2-ab a2-ab+(1/4)b2=(5/4)b2 (a-b/2)2=(5/4)b2 a-b/2=(5/2)b a-b/2=(5)b/2 a=
20、b/2+(5)b/2 a/b=(5+1)/2 b/a=2/(5+1) b/a=2(5-1)/(5+1)(5-1) b/a=2(5-1)/4 b/a=(5-1)/2 斐波那契数列与黄金分割让我们首先从一个数列开始,它的前面两个数是:1、1,后面的每个数都是它前面的两个数之和。例如:1、1、2、3、5、8、13、21、34、55、89、144.这个数列的名字叫做“斐波那契数列”,这些数被称为“斐波那契数”。 斐波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐 渐趋于黄金分割比的。即f(n)/f(n+1)-0.618。由于斐波那契数都是整数,两个整数相除之商是
21、有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的斐波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。 一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我国的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。 无穷连分数、无穷套根式与黄金数有限段的黄金比1/X=X/(1-X),有X2=1-X,X(1-X)=1,得X=1/(1+X)。 有限式=无限式对等式右边分母中的X又以1/(1+X)代替,可得X=1/(1+1/(1+X);以此类推,可得无穷连分数:X=1/(1+1/(
22、1+1/(1+1/(1+.。 对等式进行类似的代替,可得:X=(1+(1+(1+(1+.。这样一个简洁的无穷连分式和无穷套根式给人以有序而无穷的印象,使人具有言而不喻的美感,黄金数与无穷连分数、无穷套根式之间竟有如此迷人的联系,怎不叫人惊叹!? 线段的黄金分割(尺规作图)1. 设已知线段为AB,过点B作BCAB,且BC=AB/2; 线段的黄分割图2. 连结AC; 3. 以C为圆心,CB为半径作弧,交AC于D; 4. 以A为圆心,AD为半径作弧,交AB于P,则点P就是AB的黄金分割点。 事实上,在一个黄金矩形中,以一个顶点为圆心,矩形的较短边为半径作一个四分之一圆,交较长边与一点,过这个点,作一
23、条直线垂直于较长边,这时,生成的新矩形(不是那个正方形)仍然是一个黄金矩形,这个操作可以无限重复,产生无数个黄金矩形。 编辑本段美学应用黄金分割与美感它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引 利用黄金分割率的紫禁城起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧。以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 黄金分割
链接地址:https://www.31ppt.com/p-4175241.html