超声波测距系统设计现代测控技术课程设计.doc
《超声波测距系统设计现代测控技术课程设计.doc》由会员分享,可在线阅读,更多相关《超声波测距系统设计现代测控技术课程设计.doc(25页珍藏版)》请在三一办公上搜索。
1、 J I A N G S U U N I V E R S I T Y现代测控技术课程设计超声测距系统设计 学 院: 班 级: 姓名学号: 学 号: 指导教师: 前言利用超声波作为定位技术是蝙蝠等生物作为防御和捕捉猎物生存的手段,也就是由生物体发射不能被人们听到的超声波20Hz以上的机械波,借助空气或其它介质传播。通过被待捕捉的猎物或障碍物反射回来的时间间隔长短和反射回来的信号强弱来判断反射物的类型及距离的远近。人类采用仿生学,人工发射出超声波。目前,超声波已应用在民用及国防工业中。例如:用超声波探测海洋潜艇位置、鱼群以及确定海底暗礁等障碍物形状及位置。利用超声波在固体巢传播的时间确定物体的长度
2、以及超声波在固体里遇到障碍物界面上的反射来确定物体内部损伤(如裂缝、气孔及杂质等)位置,称之为无损探伤。利用超声波测距辅助机器人确定机器人自身位置和环境识别,从而准确避开障碍物按照预先规划好的行进方向行进来完成预定任务。另外还应用于矿井探测、液面探测、建筑、汽车报警等领域。超声波测距是一种非接触式检测方式,和红外、激光及无线电测距相比,超声波测距有其不受光线影响,结构和操作简单,成本低等特点。采用高精度视觉识别环境技术需要复杂的信息处理,且体积较大,价格昂贵。对于体积较小成本较低的机器人,这些特点尤为突出,相比之下,超声波测距的特点弥补了以上不足,在许多情况下能很好地完成探测任务。就此而言,本
3、课题的研究是有一定实际意义的。目录前言21、课程设计的任务与要求52、系统方案比较与选择52.1利用分立模块的超声波测距仪52.2基于AT89C51单片机的超声波测距仪63、系统方案与电路设计73.1系统整体方案的设计73.2系统整体方案的论证73.3超声波测距仪原理73.4超声波测距系统电路的设计83.4.1发射电路的设计83.4.2接受电路的设计93.4.3显示模块的设计104、系统硬件结构设计和软件设计114.1单片机实现测距原理124.2系统软件设计125、系统电路调试与误差分析155.1电路的调试155.2系统的误差分析155.2.1声速引起的误差155.2.2单片机时间分辨率的影响
4、176PROTUES仿真18结束语20参考文献21附录22 1 课题设计的任务和要求 设计一超声波测距仪,任务: (1)了解超声波测距原理。 (2)根据超声波测距原理,设计超声波测距器的硬件结构电路。 设计一超声波测距仪,要求: (1)设计出超声波测距仪的硬件结构电路。 (2)对设计的电路进行分析能够产生超声波,实现超声波的发送与接收,从而实现利用超声波方法测量物体间的距离。(3)对设计的电路进行分析。 (4)用PROTUES进行仿真,以数字的形式显示测量距离。2.系统方案比较与选择2.1利用分立模块的超声波测距仪系统包括超声波测距模组、LED数码显示模组、驱动模组控制模组及电源五部分。超声波
5、测距模块主要由发射部分和接收部分组成,超声波的发射受主控制器控制(如图1所示);超声波换能器谐振在40KHz的频率,模块上带有40KHz方波产生电路。显示模块是一个8位段数码显示的LCD;测量结果的显示用到三位数字段码,格式为X点XX米,同时还用两位数字段码显示数据的个数。测量结果的显示用到三位数字段码,格式为X点XX米,同时还用两位数字段码显示数据的个数。图1 超声波测距模块组硬件框图优点:具有历史数据存储功能、出错管理功能。缺点:能测的最小距离比较长,不能实现双向测距,电路复杂性能稳定性不高。2.2基于AT89C51单片机的超声波测距仪超声波测距仪主要以单片机AT89C51为核心,其发射器
6、是利用压电晶体的谐振带动周围空气振动来工作的。超声波发射器向某一方向发射超声波,在发射的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器接收到反射波就立即停止计时。一般情况下,超声波在空气中的传播速度为340m/ s,根据计时器记录的时间t ,就可以计算出发射点距障碍物的距离S,即S=340t/2,这就是常用的时差法测距。在测距计数电路设计中,采用了相关计数法,其主要原理是:测量时单片机系统先给发射电路提供脉冲信号,单片机计数器处于等待状态,不计数;当信号发射一段时间后,由单片机发出信号使系统关闭发射信号,计数器开始计数,实现起始时的同步;当接收信号的最后一个脉冲到来
7、后,计数器停止计数。双向超声波测距仪的系统主要有几下部分组成(如图2所示): LED显示模块,AT89C51芯片,超声波发射模块,超声波接收模块,电源模块等五大模块组成。图2 系统设计总体框图优点:双向测距,精度高,功耗低。在电路中我们采用PIC芯片它的优点是:精简指令使其执行效率大为提高;彻底的保密性;其引脚具有防瞬态能力,通过限流电阻可以接至220V交流电源,可直接与继电器控制电路相连,无须光电耦合器隔离,给应用带来极大方便。基于上述两种方案的比较,方案一,测量盲区较长,结构复杂且稳定性不高。方案二,能进行双向测距,精度高,功耗低,模块简单,稳定性高。所以选用方案二。3.系统方案与电路设计
8、3.1系统整体方案的设计由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量。利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也能达到农业生产等自动化的使用要求。 超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率、和声波特性各不相同,因而用途也各不相同。目前在近距离测量方面常用的是压电式超声波换能器。根据设计要求并综合各方面因素,本文采用AT89C51单片机作为控制器,用动态扫描法实现LED数字显示,超声波
9、驱动信号用单片机的定时器。3.2系统整体方案的论证超声波测距的原理是利用超声波的发射和接受,根据超声波传播的时间来计算出传播距离。实用的测距方法有两种,一种是在被测距离的两端,一端发射,另一端接收的直接波方式,适用于身高计;一种是发射波被物体反射回来后接收的反射波方式,适用于测距仪。此次设计采用反射波方式。 测距仪的分辨率取决于对超声波传感器的选择。超声波传感器是一种采用压电效应的传感器,常用的材料是压电陶瓷。由于超声波在空气中传播时会有相当的衰减,衰减的程度与频率的高低成正比;而频率高分辨率也高,故短距离测量时应选择频率高的传感器,而长距离的测量时应用低频率的传感器。3.3超声波测距仪原理单
10、片机发出40kHZ的信号,经放大后通过超声波发射器输出;超声波接收器将接收到的超声波信号经放大器放大,用锁相环电路进行检波处理后,启动单片机中断程序,测得时间为t,再由软件进行判别、计算,得出距离数并送LED显示。超声波发射器放大电路超声波接收器放大电路锁相环检波电路定时器单片机控制显示器图3 测距系统原理图超声传感器是一种将其他形式的能转变为所需频率的超声能或是把超声能转变为同频率的其他形式的能的器件。目前常用的超声传感器有两大类,即电声型与流体动力型。3.4 超声波测距系统电路的设计3.4.1 发射电路的设计由单片机产生的40kHz的方波需要进行放大,才能驱动超声波传感器发射超声波,发射驱
11、动电路其实就是一个信号放大电路,本课题所选用的是74HC04集成芯片,图2-4为发射电路图.由单片机产生的40kHz的方波需要进行放大,才能驱动超声波传感器发射超声波,发射驱动电路其实就是一个信号放大电路,本课题所选用的是74HC04集成芯片,图3.3为发射电路图。图3.3 发射电路74HC04内部集成了六个反向器(输入与输出相位相反的电子电路),即1A输入高电平,1Y输出高电平同时具有放大的功能。74HC04的管脚如图3.4所示。Y4A4Y5A5Y6A6VccGNDY3A3Y2A2A1Y1 图3.4 74HC04管脚结构3.4.2 接收电路的设计超声波接收头接收到超声波后,转换为电信号,此时
12、的信号比较弱,必需经过放大。本系统采用了LM741对接收到的信号进行放大,接收电路如图3.5所示。 图3.5 接收电路超声波探头接收到超声波后,通过声电转换,产生一正弦信号,其频率为传感器的中心频率,即40kHz。该信号通过C高通滤波后经LM741放大,最后经二极管整形后输出到单片机中断口,LM741是一单运放集成芯片.3.4.3显示模块的设计LED(Light-Emitting Diode,发光二极管)有七段和八段之分,也有共阴和共阳两种。LED数码管结构简单,价格便宜。图3.6示出了八段LED数码显示管的结构和原理图。图3.6(a)为八段共阴数码显示管结构图,图3.6(b)是它的原理图,图
13、3.6(c)为八段共阳LED显示管原理图。八段LED显示管由八只发光二极管组成,编号是a、b、c、d、e、f、g和SP,分别与同名管脚相连。七段LED显示管比八段LED少一只发光二极管SP,其他与八段相同。 (a) (b) (c) 图3.6 八段码LED数码显示管原理和结构单片机对LED管的显示可以分为静态和动态两种。静态显示的特点是各LED管能稳定地同时显示各自字形;动态显示是指各LED轮流地一遍一遍显示各自字符,人们由于视觉器官惰性,从而看到的是各LED似乎在同时显示不同字形。为了减少硬件开销,提高系统可靠性并降低成本,单片机控制系统通常采用动态扫描显示。但是由于本系统所用的单片机引脚少,
14、剩余引脚很多,而且也只需显示三位字符,所以,采用了静态的显示方式,且采用了软件译码,这样单片机引脚输出可直接接到LED显示管上。这样省去了外部复杂的译码电路。4.系统的硬件结构设计和软件设计硬件电路的设计主要包括单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分。单片机采用AT89C51或其兼容系列。采用12MHz高精度的晶振,以获得较稳定时钟频率,减小测量误差。单片机用P1.0端口输出超声波换能器所需的40kHz的方波信号,利用外中断0口监测超声波接收电路输出的返回信号。显示电路采用简单实用的4位共阳LED数码管,段码用74LS244驱动,位码用PNP三极管8550驱动。4.1单
15、片机实现测距原理单片机发出超声波测距是通过不断检测超声波发射后遇到障碍物所反射的回波,从而测出发射和接收回波的时间差Tr,然后求出距离SCTr2,式中的C为超声波波速。限制该系统的最大可测距离存在4个因素:超声波的幅度、反射的质地、反射和入射声波之间的夹角以及接收换能器的灵敏度。接收换能器对声波脉冲的直接接收能力将决定最小的可测距离。为了增加所测量的覆盖范围、减小测量误差,可采用多个超声波换能器分别作为多路超声波发射接收的设计方法。由于超声波属于声波范围,其波速C与温度有关。4.2系统软件的设计超声波测距仪的软件设计主要由主程序、超声波发生子程序、超声波接收中断程序及显示子程序组成。我们知道C
16、语言程序有利于实现较复杂的算法,汇编语言程序则具有较高的效率且容易精细计算程序运行的时间,而超声波测距仪的程序既有较复杂的计算(计算距离时),又要求精细计算程序运行时间(超声波测距时),所以控制程序可采用C语言和汇编语言混合编程。 超声波测距的原理为超声波发生器T在某一时刻发出一个超声波信号,当这个超声波遇到被测物体后反射回来,就被超声波接收器R所接收到。这样只要计算出从发出超声波信号到接收到返回信号所用的时间,就可算出超声波发生器与反射物体的距离。距离的计算公式为: d=s/2=(ct)/2 其中,d为被测物与测距仪的距离,s为声波的来回的路程,c为声速,t为声波来回所用的时间。在启动发射电
17、路的同时启动单片机内部的定时器T0,利用定时器的计数功能记录超声波发射的时间和收到反射波的时间。当收到超声波反射波时,接收电路输出端产生一个负跳变,在INT0或INT1端产生一个中断请求信号,单片机响应外部中断请求,执行外部中断服务子程序,读取时间差,计算距离。 软件分为两部分,主程序和中断服务程序。主程序完成初始化工作、各路超声波发射和接收顺序的控制。 定时中断服务子程序完成三个方向超声波的轮流发射,外部中断服务子程序主要完成时间值的读取、距离计算、结果的输出等工作。程序流程图如图4.1,(a)为主程序流程图,(b)为定时中断子程序流程图,(c)为外部中断子程序流程图。等待初使化定时中断子程
18、序有回波否外部中断子程序定时中断入口外部中断入口返回返回有无定时初使化发射超声波停止发射清中断发射完否是是否读取时间值计算距离保存结果清中断(a) (b) (c) 图4.1 程序流程图用单片机编程产生40kHz方波,可用延时程序和循环语句实现。先定义一个延时函数delays(),然后可用for语句循环,并且循环一次同时改变方波输出口的电平高低,从而产生方波。部分程序如下:void delays() /延时函数void main() for(a=0;a200;a+) /产生100个40KHz的方波 P36=!P36; /每循环一次,输出引脚取反 delays() ; 单片机每隔一段时间产生一串4
19、0kHz方波,同时定时器开始计时,当收到回波,产生中断信号后,单片机执行中断程序。在中断程序中,先让定时器停止计数,然后读取时间,通过时间计算出所测距离,输出结果。中断程序如下:void intersvro(void) interrupt 0 using 1 /INTO中断服务程序 uint bwei,shwei,gwei; uchar DH,DL; ulong COUNT; ulong num; TR0=0 ; /停止计数 DH=TH0; DL=TL0; COUNT=TH0*256+TL0; num= (344*COUNT)/20000; /计算距离 bwei=num/100; /取百位 g
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 超声波 测距 系统 设计 现代 测控 技术 课程设计

链接地址:https://www.31ppt.com/p-4150686.html