毕业设计基于单片机控制的三相逆变电源设计.doc
《毕业设计基于单片机控制的三相逆变电源设计.doc》由会员分享,可在线阅读,更多相关《毕业设计基于单片机控制的三相逆变电源设计.doc(56页珍藏版)》请在三一办公上搜索。
1、目 录第一章 绪论1.1课题的背景31.2电源技术的发展概况4第二章 基本原理62.1 IGBT管的基本原理与特性62.1.1 IGBT的工作原理62.1.2 IGBT的特性与参数特点82.1.3 IGBT的保护92.2逆变技术及其原理112.2.1现代逆变技术的分类122.2.2逆变电路的基本工作原理112.2.3电力器件的换流方式122.2.4三相电压型逆变电路142.3 SPWM控制技术及其原理172.3.1 SPWM控制的基本原理172.3.2单极性和双极性SPWM控制方式18第三章 系统硬件设计193.1系统总体介绍183.2系统主电路设计203.2.1输入EMI滤波器的设计203.
2、2.2输入整流滤波电路的设计223.2.3逆变器和输出滤波电路的设计243.2.4 RCD缓冲电路的设计273.3采样电路及A/D转换电路313.4 SPWM波产生芯片SA4828及其应用323.4.1 SA4828工作原理323.4.2 SA4828与单片机的连接353.4.3 SA4828的编程373.5 IGBT驱动电路EXB841413.5.1 IGBT驱动电路的要求413.5.2.集成化IGBT专用驱动器EXB841443.5.3使用EXB841应该注意的一些事项473.6系统保护电路设计473.7辅助电源电路的设计48第四章 系统软件的设计504.1系统控制程序技术504.2软件抗
3、干扰技术52结论54致谢55参考文献56第一章 绪论1.1课题的背景随着各国工业与科学技术的飞速发展,在将来工业高度自动化的情况下,计算机技术、电力电子技术及自动控制技术将成为三种最重要的技术。所谓电力电子技术,就是利用半导体功率开关器件、电子技术和控制技术,对电气设备的电功率进行变换和控制的一门技术。这项技术自20世纪50年代以来,经历了半个世纪的发展,现在已经成为理论和科学体系比较完整,而且又相对独立的一门科学技术。特别是80年代以来,由于电力电子技术突飞猛进的发展,及其对工业发展所产生的作用,它被各国专家学者称为人类社会继计算机之后的第二次电子革命,它在世界各国工业文明的发展过程中所起的
4、关键作用,可能仅次于计算机。预计在21世纪,电力电子技术对工业自动化、交通运输、城市供电、节能、环境污染等方面的发展,将会产生更大的推动作用。正弦波逆变器技术是电力电子技术中的一个最重要的组成部分,它的作用是把从电力网上得到的定压定频交流电能,或从蓄电池、太阳能电池等得到的电能质量较差的原始电能,变换成电能质量较高的、能满足负载对电压和频率要求的交流电能。这种交流电能不仅可用于交流电机的传动,而且还可作为不间断电源、变频电源、有源滤波器、电网无功补偿器等逆变器中的电能。近年来,随着各行各业的技术水平和操作性能的提高,它们对电源品质的要求也在不断提高。为了高质量和有效地使用电能,许多行业的用电设
5、备都不是直接使用交流电网提供的交流电作为电源,而是通过各种形式对电网交流电进行变换,从而得到各自所需的电能形式。其中,把直流电变成交流电的过程叫做逆变,完成逆变功能的电路称为逆变电路。这种能量的变换对节能、减小环境污染、改善工作条件、节省原材料、降低成本和提高产量等方面均起着非常重要的作用。随着正弦波脉宽调制(SPWM)逆变技术的日益成熟,逆变电源被广泛应用到微波通讯、野外活动、高速公路、海岛、军事、医疗、航空航天、风力发电等各个领域。在一些重要的用电部门(如机场、医院、银行)和一些重要的用电设备中(如计算机、通信设备)对逆变电源质量的要求也越来越高:不仅要求不停电,还要要求输出电压波形准确完
6、好,如不间断电源 UPS(Uninterruptible Power Supply )广泛应用于计算机、程控交换机、数据处理系统、医疗诊断仪及精密电子仪器等不能中断供电的场合,而衡量逆变电源质量的首要指标就是输出波形质量的情况。对于逆变电源,其负载可能具有不同的性质,当某一负载投入运行时,特别是非线性负载,很可能引起逆变器的输出电压波形周期性畸变,谐波增加;同时,由于变压器本身存在非线性的问题,使得实际加载在负载上的波形也会发生畸变,因此,上述情况会让负载端的电压波形发生更为严重的畸变,而这样的波形对各种电气设备都有不同程度的影响和危害,从而影响整个电路正常、安全可靠地工作,对供电系统的影响也
7、会日益严重,这样,也就逐渐显示出了对逆变电源输出波形控制的重要性。因此,为了使逆变电源具有高质量的输出波形,研究设计逆变电源的各种先进的波形控制技术已成为近年来国内外学者研究的热点。1.2电源技术的发展概况电力电子技术就是利用半导体功率开关器件、电力电子技术和控制技术,对电气设备的电功率进行变换和控制的一门技术。上个世纪80年代以来,由于半导体器件,电子技术等的不断推陈出新,电力电子技术有了突飞猛进的发展,其对工业发展所产生的巨大作用,被各国的专家学者称为人类社会继计算机之后的第二次的电子革命,它在世界各国工业文明的发展中所起的关键作用可能仅次于计算机。电源是电力电子技术的主要应用领域之一,随
8、着新的电子元器件、新电磁材料、新变换技术、新的控制技术的出现与应用,逆变电源技术得到越来越广泛的应用。电源技术的发展,大体经历了几个阶段:由磁放大式到硅二极管整流式,再到可控硅(晶闸管)整流式,直到发展到逆变式(开关式)。采用逆变技术,可使所设计的电源具有许多方面的优越性:1.可灵活地调节输出电压或电流的幅度和频率通过控制回路,我们可以控制逆变电路的工作频率和输出时间的比例,从而使输出电压或电流的频率和幅值按照人们的意愿或设备工作的要求来灵活地变化。2.可将蓄电池中的直流电转换成交流电或其他形式的直流电,这样就不会因为交流电网停电或剧烈变化而影响工作。3.可明显地减小用电设备的体积和重量,节省
9、材料在很多用电设备中,变压器和电抗器在很大程度上决定了其体积和重量,如果我们将变压器绕组中所加电压的频率大幅度提高,则变压器绕组匝数与有效面积之积就会明显减小,变压器的体积和重量明显地减小了。4采用逆变技术的电源还具有高效节能的优越性,表现在如下几个方面:1)在许多应用交流电动机的场合,在其负载变化时,传统的方法是调节电动机的通电时间所占比例,这样电动机就会频繁地制动、起动。而电动机的起动、制动消耗的能量往往很大,如使用变频电源来调节电动机做功的量,则可节约很大一部分能量。2)采用逆变技术的电源,其变压器的体积和重量大大减小了,也即减小了铁心横面积和线圈匝数。变压器本身的损耗主要包括原、副边铜
10、耗和铁芯损耗,铁芯横面积和线圈匝数的大幅度减小也就大大降低了铜耗和铁耗。因此,采用逆变技术大大提高变压器的工作频率,使得变压器的损耗变得比工频工作时小得多,从而达到节能的目的。3)传统的、采用工频变压器的整流式电源设备的功率因数一般在0.5-0.8之间,这是因为其电流谐波成分和相移角都比较大。在逆变电源中,如果用功率因数校正技术,能使输入电流的谐波成分变得很小,从而使功率因数约为1,节能的效果非常明显。5.动态响应快、控制性能好、电气性能好。由于逆变电路的工作频率高,调节周期短,使得电源设备的动态响应或者说动态特性好,表现为:对电网波动的适应能力强、负载效应好、启动冲击电流小、超调量小、恢复时
11、间快、,输出稳定、纹波小。6.电源故障保护能力快由于逆变器工作频率高、控制速度快,对保护信号反应快,从而增加了系统的可靠性。另外,现代越来越复杂的电子设备对电源提出了各种各样的负载要求,一个特定用途的电源,应当具有特定的负载性能要求和外特性,同时还应当具备安全可靠、高效、高功率因数、低噪音的特点,另外,无电磁干扰、无电网污染、省电节能也是我们应当认真考虑的设计要求。电源技术发展到今天,它融汇了电子、功率集成、自动控制、材料、传感、计算机、电磁兼容、热工等诸多技术领域的精华,已从多学科交叉的边缘学科成长为独树一帜的功率电子学。第二章 基本原理2.1 IGBT管的基本原理与特性绝缘栅双极型晶体管(
12、Insulated Gate Bipolar Transistor)简称IGBT,因为它的等效结构具有晶体管模式,所以称为绝缘栅双极型晶体管。IGBT于1982年开始研制,1986年投产,是发展很快而且很有前途的一种混合型器件。IGBT综合了MOS和GTR的优点,其导通电阻是同一耐压规格的功率MOS的1/10,开关时间是同容量GTR的1/10。在电机控制、中频电源、各种开关电源以及其他高速低损耗的中小功率领域,IGBT有取代GTR和VDMOS的趋势。2.1.1 IGBT的工作原理1.IGBT的结构就IGBT的结构而言,是在N沟道MOSFET的漏极N层上又附加上一层P层的的四层结构。图2-1(a
13、)为N沟道VDMOSFET与GTR组合的N沟道IGBT(N-IGBT)。IGBT比VDMOSFET多一层注入区,形成了一个大面积的结,使IGBT导通时由注入区向N基区发射少子,从而对漂移区电导率进行调制,使得IGBT具有很强的通流能力。简化等效电路表明,IGBT是GTR与MOSFET组成的达林顿结构,是一个由MOSFET驱动的厚基区晶体管,为晶体管基区内的调制电阻。 2.IGBT的工作原理N沟道IGBT通过在栅极发射极间加阈值电压以上的(正)电压,在栅极电极正下方的层上形成反型层(沟道),开始从发射极电极下的层注入电子。该电子为晶体管的少数载流子,从集电极衬底层开始注入空穴,进行电导率调制(双
14、极工作),所以可以降低集电极发射极间饱和电压。工作时的等效电路如图2-1(b)所示,在发射极电极侧形成寄生晶体管。若寄生晶体管工作,又变成晶闸管。电流继续流动,直到输出侧停止供给电流。通过输出信号已不能进行控制。这种状态称为闭锁状态。为了抑制寄生晶体管的工作,IGBT采用尽量缩小晶体管的电流放大系数作为解决闭锁的措施。具体来说,的电流放大系数设计在0.5以下IGBT的闭锁电流IL为额定电流(直流)的3倍以上。IGBT的驱动原理与功率MOSFE基本相同,为场控器件,通断由栅射极电压决定。导通: 大于开启电压时,MOSFET内形成沟道,为晶体管提供基极电流,IGBT导通。导通压降:电导调制效应使电
15、阻减小,使通态压降减小。关断:栅、射极间施加反压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,IGBT关断。2.1.2 IGBT的特性与参数特点1.IGBT的伏安特性和转移特性IGBT的伏安特性如图2-2(a)所示,它反映在一定的栅极发射极电压与的关系。越高,越大。值得注意的是,IGBT的反向电压承受能力很差,从曲线中可知,其反向阻断电压只有几十伏,因此限制了它在需要承受高反压场所的使用。图2-2(b)是IGBT的转移特性曲线。当(开启电压,一般为36伏)时,IGBT开通,其输出电流与驱动电压基本呈线性关系。当时,IGBT关断。2.IGBT的参数特点(1)IGBT的开关特性好
16、,开关速度快,其开关时间是同容量GTR的1/10。IGBT的开通过程是从正向阻断状态转换到正向导通的过程。开通时间定义为从驱动电压 的脉冲前沿上升到最大值的10%所对应的时间起至集电极电流上升到最大值的90止所对需要的时间.又可分为开通延迟时间和电流上升时间两部分。 定义为从10到10所需的时间,定义为从10上升至90所需要的时间,如图2-3所示。 图2-3 IGBT的开关特性IGBT的关断过程是从正向导通状态转换到正向阻断状态的过程。关断时间定义为从驱动电压的脉冲后沿下降到90处起至集电极电流下降到10处所经过的时间。又可分为关断延迟时间和电流下降时间两部分。是从90至90所需的时间;是指9
17、0下降至10所需的时间,由(由IGBT中的MOS管决定)和(由IGBT中的晶体管决定)两部分组成。 IGBT的开关时间与集电极电流、栅极电阻以及结温等参数有关。随着集电极电流和栅极电阻的增加,其中对开关时间影响较大。(2)IGBT的通态压降低。在大电流段是同一耐压规格的VDMOS的1/10左右。在小电流段的1/2额定电流以下通态压降有负温度系数,因此IGBT在并联使用是具有电流自动调节能力。(3)IGBT的集电极电流最大值。在IGBT管中由来控制的大小,当大到一定的程度时,IGBT中寄生的NPN和PNP晶体管处于饱和状态,栅极G失去对集电极电流Ic的控制作用,这叫擎住效应。IGBT发生擎住效应
18、后,大、功耗大,最后使器件损坏。为此,器件出厂时必须规定集电极电流的最大值,以及与此相应的栅极发射极最大电压。集电极电流值超过时,IGBT产生擎住效应。另外器件在关断时电压上升率太大也会产生擎住效应。(4)IGBT的安全工作区比GTR宽,而且还具有耐脉冲电流冲击的能力。IGBT在开通时为正向偏置,其安全工作区称为正偏安全工作区FBSOA,如图2-4(a)所示,IGBT的导通时间越长,发热越严重,安全工作区越小。IGBT在关断时为反向偏置,其安全工作区称为反偏安全工作区RBSOA,如图2-4(b)所示,RBSOA与电压上升率有关,越大,RBSOA越小。在使用中一般通过选择适当的UCE和栅极驱动电
19、阻控制,避免IGBT因过高而产生擎住效应。图2-4IGBT的安全工作区(5)IGBT的输入阻抗高,可达1091011欧姆数量级,呈纯电容性,驱动功率小,这些与VDMOS相似。(6)与VDMOS和GTR相比,IGBT的耐压可以做得更高,最大允许电压UCEM可达到4500伏以上。(7)IGBT的最高允许结温为。VDMOS的通态压降随结温升高而显著增加,而IGBT的通态压降在室温和最高结温之间变化很小,具有良好的温度特性。2.1.3 IGBT的保护IGBT与电力MOSFET管一样具有极高的输入阻抗,容易造成静电击穿,故在存放和测试时应采取防静电措施。IGBT作为一种大功率电力电子器件常用于大电流、高
20、电压的场合,对其采取保护措施,以防器件损坏显得非常重要。(1)过电流保护IGBT应用于电力系统中,对于正常过载(如电机起动、滤波电容的合闸冲击以及负载的突变等)系统能自动调节和控制,不至于损坏IGBT。对于非正常的短路故障要实行过流保护。通常的做法是:切断栅极驱动信号。只要检测出过流信号,就在2us内迅速撤除栅极信号。当检测到过流故障信号时,立即将栅压降到某一电平,同时启动定时器,在定时器到达设定值之前,若故障消失,则栅压又恢复到正常工作值;若定时器到达设定值时故障仍未消除,则把栅压降低到零。这种保护方案要求保护电路在内响应。(2)过电压保护利用缓冲电路能对IGBT实行过电压抑制并抑制过量的电
21、压变化率 。但由于IGBT的安全工作区宽,因此,改变栅极电阻的大小,可减弱IGBT对缓冲电路的要求。然而,由于IGBT控制峰值电流能力比VDMOS强,因此在有些应用中可不用缓冲电路。(3)过热保护利用温度传感器检测IGBT的壳温,当超过允许温度时主电路跳闸以实现过热保护。2.2逆变技术及其原理通常,把交流电变成直流电的过程叫做整流;完成整流功能的电路叫做整流电路。与之相对应,把直流电变成交流电的过程叫做逆变,完成逆变功能的电路则称为逆变电路,而实现逆变过程的装置叫做逆变设备或逆变器。现代逆变技术就是研究现代逆变电路的理论和应用设计方法的一门科学。这们学科是建立在工业电子技术、半导体器件技术、现
22、代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术、磁性材料等学科基础之上的一门实用技术。2.2.1现代逆变技术的分类现代逆变技术种类很多,其主要的分类方式如下:1.按逆变器输出交流的频率,可分为工频逆变(5060Hz)、中频逆变(400Hz到十几KHz)、高频逆变(十几KHz到MHz)。2.按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。3.按输出能量的去向,可分为有源逆变和无源逆变。4.按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。5.按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管逆变、IGBT逆变等等。6.按输出稳定的参量,可分为
23、电压型逆变和电流型逆变。7.按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆变。8.按控制方式,可分为调频式(PFM)逆变和调脉宽式(PWM)逆变.9.按逆变开关电路的工作方式,可分为谐振式逆变、定频硬开关式逆变和定频软开关式逆变。2.2.2逆变电路的基本工作原理图2-5(a)为单相桥式逆变电路,S1-S4是桥式电路的4个臂,它们由电力电子器件及其辅助电路组成。当开关S1、S4闭合,S2、S3断开时,负载电压为正;当开关S1、S4断开,S2、S3闭合时,为负,其波形如图2-5(b)所示。这样,就把直流电变成交流电,改变两组开关的切换频率,即可改变输出交流电的频率。这就是逆变电路的最
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业设计 基于 单片机 控制 三相 电源 设计
链接地址:https://www.31ppt.com/p-4149603.html