基于51单片机的数字电压表的设计.doc
《基于51单片机的数字电压表的设计.doc》由会员分享,可在线阅读,更多相关《基于51单片机的数字电压表的设计.doc(41页珍藏版)》请在三一办公上搜索。
1、摘要随着电子技术的发展,电子测量技术对测量的精度和功能的要求也越来越高,而数字电压表作为实验室的基本测量设备,它可以很好的满足测量精度和功能的要求。本设计利用AT89S51单片机技术结合A/D转换(采用ADC0809)构建了一个直流数字电压表。经过对数字电压表基本原理的分析,本文设计了一个以51单片机为核心的数字电压表系统,给出了直流数字电压表的设计流程,设计了电压测量子系统和电流测量子系统,给出了硬件电路的框图、电气原理图和软件流程图。系统设置了3个键的键盘,用于设定电压、电流切换的功能键、系统复位键以及清零键。 关键词:数字电压表;AT89S51单片机;A/D转换;ADC0809;Abst
2、ractAs electronic science and technology development, electronic measurement technology on the accuracy of measurement and functional requirements are increasingly high, and digital voltmeter measurement equipment as the basic laboratory, it can well meet the measuring precision and function require
3、ments. A dc digital voltmeter is built by using AT89S51 with the A/D convertor (ADC0809)in the paper.This paper first introduces the main method and design voltmeter SCM system advantage; Then introduces the design process of dc digital voltmeter, and hardware system and the design of software syste
4、m, and gives the hardware circuit design system diagram and software system design flow diagram. Keywords: Digital voltmeter; AT89S51MCS; A/D conversion; ADC0809.目录1 绪论11.1前言11.2数字电压表的介绍11.2.1数字电压表的发展概况11.2.2数字电压表在各领域中的应用21.2.3数字电压表的优点21.3单片机的介绍31.3.1单片机简介31.3.2单片机的发展概况31.3.3单片机的应用41.3.4单片机的特点61.4课题
5、背景,国内外研究现状61.5本文主要研究内容82 数字电压表的工作原理92.1数字电压表的基本结构92.2数字电压表的工作原理92.2.1模数(A/D)转换与数字显示电路102.2.2多量程数字电压表分压原理102.2.3多量程数字电压表分流原理113 硬件系统各模块具体设计及实现143.1单片机的选择143.1.1AT89S51的引脚框图153.1.2AT89S51的内部结构图173.2A/D转换器的选择183.2.1ADC0809的引脚结构193.2.2ADC0809的内部逻辑结构213.3显示器的选择213.4键盘的选择233.5表笔探针设计244 系统总体方案研究254.1总体方案确定
6、254.2系统框图及阐述254.3ADC0809与AT89S51的连接264.4键盘与单片机的连接274.5多量程数字电压表档位切换原理284.5.1多量程电压的测量284.5.2多量程电流的测量305 系统的软件设计315.1系统软件设计的总体思想315.2系统单片机的软件设计315.2.1键盘的处理315.2.2显示的处理315.2.3档位切换的处理326 系统软件流程图336.1主程序流程图336.2A/D转换流程图347 设计总结35参考文献36致 谢37附 录381 绪论1.1前言数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流
7、输入电压)转换成不连续、离散的数字形式并加以显示的仪表。传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。目前,由各种单片A/D转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,显示出强大的生命力。与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。1.2数字电压表的介绍1.2.1数字电压表的发展概况数字电压表出现在50年代初,60年代末发起来的电压测量仪表,简称DVM。它采用的是数字化测量技术,把
8、连续的模拟量,也就是连续的电压值转变为不连续的数字量,加以数字处理然后再通过显示器件显示。这种电子测量的仪表之所以出现,一方面是由于电子计算机的应用逐渐推广到系统的自动控制实验研究的领域,提出了将各种被观察量或被控制量转换成数码的要求,即为了实时控制及数据处理的要求;另一方面,也是电子计算机的发展,带动了脉冲数字电路技术的进步,为数字化仪表的出现提供了条件。所以,数字化测量仪表的产生与发展与电子计算机的发展是密切相关的;同时,为革新电子测量中的烦琐和陈旧方式也催促了它的飞速发展,如今,它又成为向智能化仪表发展的必要桥梁。如今,数字电压表已绝大部分取代了传统的模拟指针式电压表。因为传统的模拟指针
9、式电压表功能单一、精度低,读数的时候也非常不方便,很容易出错。而采用单片机的数字电压表由于测量精度高、速度快,读数时也非常方便,抗干扰能力强,可扩展性强等优点已被广泛的应用于电子及电工的测量、工业自动化仪表、自动测试系统等智能化测量领域,显示出强大的生命力。数字电压表最初是伺服步进电子管比较式,其优点是准确度比较高,但是采样速度慢,重量达几十公斤,体积大。继之出现了斜波式电压表,它的速度方面稍有提高,但是准确度低,稳定性差,再后来出现了比较式仪表改进逐次渐进式结构,他不仅保持了比较式准确度高的优点,而且速度也有了很大的提高,但它有一缺点是抗干扰能力差,很容易受到外界各种因素的影响。随后,在斜波
10、式的基础上双引申出阶梯波式1,它的唯一的进步是成本降低了,可是准确度、速度以及抗干扰能力都未能提高。而现在,数字电压表的发展已经是非常的成熟,就原理来讲,它从原来的一、二种已发展到多种,在功能上讲,则从测单一参数发展到能测多种参数;从制作元件来看,发展到了集成电路,准确度已经有了很大的提高,精度高达1V;读数每秒几万次,而相对以前,它的价格也降低了很多。所以,这种类型的数字电压表无论在功能和实际上,都具有传统数字电压表无法比拟的特点,这使得它的开发和应用具有良好的前景。1.2.2数字电压表在各领域中的应用在电量的测量中,电压、电流和频率是最基本的三个被测量。其中,电压量的测量最为经常。随着电子
11、技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。另外,由于数字式仪器具有读数准确方便、精度高、误差小、灵敏度高和分辨率高、测量速度快等特点而倍受用户青睐,数字式电压表就是基于这种需求而发展起来的,目前数字电压表已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,显示出强大的生命力。是一种必不可少的电子测量仪表。1.2.3数字电压表的优点(1)显示清晰直观,读数准确;(2)准确度高;(3)分辨度高;(4)测量范围宽;(5)扩展能力强;(6)测量速度快;(7)输入阻抗高;(8)集成度高,微功耗; (9)抗干扰能力强。数字电压表的基本结构如
12、下图1.1所示。单片机数字显示+图1.1 数字电压表基本结构可见数字电压表的核心是单片机,下面介绍单片机。1.3单片机的介绍1.3.1单片机简介单片机是一种集成电路芯片,采用超大规模集成电路技术将具有数据处理能力的中央处理器,随机存取存储器、输入/输出电路,可能还包括定时/计数器、串行通信口、显示驱动电路、脉冲调制电路、模数转换器等电路集成到一片芯片上,构成一个既小而有完善的计算机系统。有以上分析可以看出,单片机出了具备微处理器的功能外,还可以单独地完成现代工业控制所要求的智能化控制功能,这也是单片机最大的特点。1.3.2单片机的发展概况随着超大规模集成电路的发展,单片机先后经历了4位机、8位
13、机、16位机、32位机和64位机的发展阶段:(1)1971年,美国Intel公司首先推出了4位微处理器芯片4004;1975年,美国德克萨斯仪器公司首次推出4位单片机TMS-1000;此后,各个计算机生产公司竞相推出4位单片机2。(2)1972年Intel公司首先推出了8位微处理器8008,并与1976年9月率先推出MCS-48系列8位单片机,使单片机发展进入了一个新的阶段。在这之后,8位单片机纷纷面世。(3)1983年以后,集成电路的集成度可达十几万只管/片,各系列16位单片机纷纷面世。这一阶段的产品有1983年Intel公司推出的MCS-96系列,1987年Intel公司推出的80C96,
14、美国国家半导体公司推出的HPC16040,NEC公司推出的783XX系列等3。(4)随着高新技术在智能机器人、光盘驱动器、激光打印机、图像与数据实时处理、复杂实时控制、网络服务器等领域的应用与发展,20世纪80年代末推出了32位单片机,如Motorola的MC683XX系列,Intel的80960系列,以及近年来流行的ARM系列单片机。32位单片机是单片机的发展趋势,随着技术的发展及开发成本和产品价格的下降,将会与8位单片机并驾齐驱。(5)近年来,64位单片机在引擎控制、智能机器人、磁盘控制、语言/图像通信、算法密集的实时控制等场合已有应用,如英国Inmos公司的Transputer T800
15、是高性能64位单片机。虽然单片机的发展按先后顺序经历了4位、8位、16位、32位、64位的阶段,但从实际使用情况看,并没有出现像微处理器那样推陈出新、更新换代的局面,这也是单片机发展的一大特点。8位单片机是市场的主流产品,但32位单片机的发展也很迅速。1.3.3单片机的应用目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,广泛使用的各种智能IC卡等等,这些都离不开单片机。更不用说自动控制领域的机器人、智能仪表、医疗器械了。单片机的特点主要有 :高集成度,体积小,高可靠性 ;控制功能强;低电压,低功耗,便于
16、生产便携式产品 ;易扩展;优异的性能价格比。现今,单片机已成为计算机发展和应用的一个重要方面。单片机应用的重要意义还在于,它从根本上改变了传统的控制系统设计思想和设计方法。从前必须由模拟电路或数字电路实现的大部分功能,现在已能用单片机通过软件方法来实现了。这种软件代替硬件的控制技术也称为微控制技术,是传统控制技术的一次革命。此外在开发和应用过程中我们更要掌握技巧,提高效率,以便于发挥它更加广阔的用途。在现实中单片机控制应用于仪器仪表、家用电器、医用设备、航空航天、专用设备的智能化管理及过程控制等各个领域深刻了解其转速控制有重大意义,现实中大致可分如下几个范畴:(1)在智能仪器仪表上的应用单片机
17、具有体积小、功耗低、控制功能强、扩展灵活、微型化和使用方便等优点,广泛应用于仪器仪表中,结合不同类型的传感器,可实现诸如电压、功率、频率、湿度、温度、流量、速度、厚度、角度、长度、硬度、元素、压力等物理量的测量。采用单片机控制使得仪器仪表数字化、智能化、微型化,且功能比起采用电子或数字电路更加强大。例如精密的测量设备(功率计,示波器,各种分析仪)。 (2)在工业控制中的应用 用单片机可以构成形式多样的控制系统、数据采集系统。例如工厂流水线的智能化管理,电梯智能化控制、各种报警系统,与计算机联网构成二级控制系统,以及本设计的控制调速系统等。 (3)在家用电器中的应用 可以这样说,现在的家用电器基
18、本上都采用了单片机控制,从电饭褒、洗衣机、电冰箱、空调机、彩电、其他音响视频器材、再到电子秤量设备,五花八门,无所不在。 (4)在计算机网络和通信领域中的应用 现代的单片机普遍具备通信接口,可以很方便地与计算机进行数据通信,为在计算机网络和通信设备间的应用提供了极好的物质条件,现在的通信设备基本上都实现了单片机智能控制,从手机,电话机、小型程控交换机、楼宇自动通信呼叫系统、列车无线通信、再到日常工作中随处可见的移动电话,集群移动通信,无线电对讲机等4。 (5)单片机在医用设备领域中的应用 单片机在医用设备中的用途亦相当广泛,例如医用呼吸机,各种分析仪,监护仪,超声诊断设备及病床呼叫系统等等。
19、此外,单片机在工商,金融,科研、教育,国防航空航天等领域都有着十分广泛的用途。51.3.4单片机的特点单片机的一块半导体芯片集成了一太微型计算机的基本部件,在硬件结构、指令功能方面均有独特之处,主要特点如下:(1) 单片机内集成了存储器。(2) 单片机存储结构将ROM和RAM严格分工。(3) 为了满足工业控制的需要,单片机有很强的位处理功能,在其他逻辑控制功能方面也都优于一般的8位微处理器。(4) 8位处理器的引脚功能一般都是固定的。(5) 单片机类型多,并且便于扩展功能。(6) 单片机把微型计算机的各个部分集成在一块芯片上,大大缩短了系统内信号的传送距离,从而提高了系统的可靠性及运行速度。由
20、于单片机具有体积小、速度快、功耗低、性能可靠、使用方便、价格低廉等特点。1.4课题背景,国内外研究现状近20年来,微电子技术、计算机技术、集成技术、网络技术等高新技术得到了迅猛发展。这一背景和形势,不断地向仪器仪表提出了更高、更新、更多的要求,如要求速度更快、灵敏度更高、稳定性更好、样品量更少、遥感遥测更远距、使用更方便、成本更低廉、无污染等,同时也为仪器仪表科技与产业的发展提供了强大的推动力,并成了仪器仪表进一步发展的物质、知识和技术基础。传统的仪器仪表将仍然朝着高性能、高精度、高灵敏、高稳定、高可靠、高环保和长寿命的“六高一长”的方向发展。新型的仪器仪表与元器件将朝着小型化、集成化、成套化
21、、电子化、数字化、多功能化、智能化、网络化、计算机化、综合自动化、光机电一体化;在服务上专门化、简捷话、家庭化、个人化、无维护化以及组装生产自动化、无尘化、专业化、规模化的“二十化”的方向发展6。在这“二十化”中,占主导地位、起核心或关键的作用是微型化、网络化、虚拟化、数字化和智能化。(1)微型化 MEMS(Micro Electro-Mechanical System)是一项被视为21世纪广泛应用的传感器及信号处理新技术,并且被列为美国“对国家安全及繁荣有重大影响”的22项重大技术之一,主要是依托微型化技术7。应用MEMS技术的微型仪器仪表被称为芯片上的仪器仪表。它是一种集成了微传感器、微执
22、行器、信号处理和控制电路、通信接口和电源等部件,实现感应和控制物理环境的芯片及设备。它具有许多传统传感器无法比拟的优点,不仅可替代传统传感器,而且其低成本、高性能的优势使其能在更多领域得到应用,从而开辟了更广阔的新兴市场。(2)网络化 通常,基于Internet的测控系统以一个功能强大的微处理器和一个嵌入式操作系统为支撑,使其前端模块不仅完成信号的采集和控制,还兼顾实施对信号的分析与传输。在这个平台上,使用者可以方便地实现各种测量功能模块的添加、删除以及不同网络传输方式的选择。基于Internet的测控系统最为显著的特点,是信号传输的方式发生了改变,它对测量、控制信号等的传输,完全是建立在公共
23、的Internet之上,操作使用便捷。(3)虚拟化 在虚拟现实系统中,数据分析和现实由PC机的软件来完成,只要额外提供一定的数据采集硬件,就可以与PC机组成测量仪器。(4)数字化、智能化 微电子技术的进步,使仪器仪表产品与微处理器、PC技术融合得更为紧密,其数字化、智能化程度不断提高。尤其在仪器仪表的设计中采用了大量的超大规模集成(VLSI)的新器件,表面贴装技术(SMT)、多层线路板印刷、圆片规模集成(WSI)和多芯片模块(MCM)等新工艺以及CAD,CAM,CAPP,CAT等计算机辅助手段,使多媒体、人机交互、模糊控制、人工神经元网络等新技术在现代仪器仪表中得到了广泛应用8。使得越来越多的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 51 单片机 数字 电压表 设计
链接地址:https://www.31ppt.com/p-4147874.html