通信工程毕业设计(论文)基于FPGA自适应滤波器的设计与研究.doc
《通信工程毕业设计(论文)基于FPGA自适应滤波器的设计与研究.doc》由会员分享,可在线阅读,更多相关《通信工程毕业设计(论文)基于FPGA自适应滤波器的设计与研究.doc(28页珍藏版)》请在三一办公上搜索。
1、北京邮电大学世纪学院毕业设计(论文)题 目 基于FPGA自适应滤波器的 设计与研究 学 号 0000000 学生姓名 专业名称 通信工程 所在系(院) 通信与信息工程 指导教师 2012年 5 月 30 日北京邮电大学世纪学院毕业设计(论文)诚信声明本人声明所呈交的毕业设计(论文),题目基于FPGA自适应滤波器的设计与研究是本人在指导教师的指导下,独立进行研究工作所取得的成果,除了文中特别加以标注和致谢中所罗列的内容以外,毕业设计(论文)中不包含其他人已经发表或撰写过的研究成果,也不包含为获得北京邮电大学或其他教育机构的学位或证书而使用过的材料。申请学位论文与资料若有不实之处,本人承担一切相关
2、责任。本人签名: 日期: 毕业设计(论文)使用权的说明本人完全了解北京邮电大学世纪学院有关保管、使用论文的规定,其中包括:学校有权保管、并向有关部门送交学位论文的原件与复印件;学校可以采用影印、缩印或其它复制手段复制并保存论文;学校可允许论文被查阅或借阅;学校可以学术交流为目的,复制赠送和交换学位论文;学校可以公布学位论文的全部或部分内容。本人签名: 日期: 指导教师签名: 日期: 题目 基于FPGA自适应滤波器设计与研究 摘要自适应滤波器是统计信号处理的一个重要组成部分。在实际应用中,由于没有充足的信息来设计固定系数的数字滤波器,或者设计规则会在滤波器正常运行时改变,因此我们需要研究自适应滤
3、波器。凡是需要处理未知统计环境下运算结果所产生的信号或需要处理非平稳信号时,自适应滤波器可以提供一种吸引人的解决方法,而且其性能通常远优于用常方法设计的固定滤波器。此外,自适应滤波器还能提供非自适应方法所不可能提供的新的信号处理能力。 本文从自适应滤波器研究的意义入手,介绍了自适应滤波器的基本理论思想,具体阐述了自适应滤波器的基本原理、算法及设计方法。自适应滤波器的算法是整个系统的核心。本文中,对两种最基本的自适应算法,即最小均方误差(LMS)算法和递归最小二乘(RLS)算法进行了详细的介绍和分析,并针对两种算法的优缺点进行了详细的比较。关键词 FPGA LMS RMS自适应滤波器 Title
4、 Design and research of Auto-adapted Filter based on FPGA AbstractThe auto-adapted filter is an important part of the digital signal processing. In practical application, there havent sufficient information to design the fixed coefficient digital filter, or the design rule will be changed when the f
5、ilter normally operated. Therefore, we need to research the auto-adapted filter. Whenever needs to process the signal under the unknown statistical environment, or the non-steady signal, the auto-adapted filter can provide a appealing solution. Moreover, its performance usually over the normally fix
6、ed filter. In addition, the auto-adapted filter can also provide the ability of the recent signal process which the non-auto-adapted method is impossible to provide. Firstly this thesis proposed the importance of auto-adapted filter research and introduced its elementary theory , algorithm and desig
7、n method. The core of the whole system is the auto-adapted filters algorithm . In this article, two of the most basic auto-adapted algorithms, the smallest mean error (LMS) algorithm and the recursive least squares (RLS) algorithm, have particularly introduced and analyzed.Keywords FPGA LMS RMS Auto
8、-adapted Filter目录1前言11.1 引言11.2 课题研究意义和目的21.3 国内外研究发展状况22自适应算法研究及分析52.1 滤波器的基本概念52.2 数字滤波器的基本概念52.3 自适应滤波器的原理72.4自适应滤波算法种类82.4.1 最小均方(LMS)算法82.4.2 递推最小二乘法(RLS)算法123 自适应滤波器的设计153.1FPGA背景及工作原理153.1.1背景153.1.2 FPGA工作原理153.2 滤波器设计163.2.1、ALE的基本原理163.2.2对ALE性能的相关讨论183.2.3仿真结果204结论21致谢22参考文献231前言1.1 引言 随着
9、信号处理技术的不断发展,对信号处理速度的要求也不断提高。由于受到目前技术水平的限制,特别是集成电路技术发展的限制,许多理论上已经很成熟的信号处理算法很难得以实用,这里面一个最重要的原因是硬件速度问题。要求处理的信号形式越来越复杂,使得现代信号处理的方法大都以大数据量、高复杂度为其主要特点。在这种情况下,寻找有效的实时信号处理方法是非常有必要和迫切的。滤波技术是信号处理中的一种基本方法和技术,尤其数字滤波技术使用广泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。从总的来说滤波可分为经典滤波和现代滤波。经典滤波要求已知信号和噪声的统计特性,如维纳滤波和卡尔曼滤波。现代滤波则不要求己知信
10、号和噪声的统计特性,如自适应滤波。自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果,自动地调节现时刻的滤波参数,从而达到最优化滤波。自适应滤波具有很强的自学习、自跟踪能力,适用于平稳和非平稳随机信号的检测和估计。自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。其中,自适应滤波算法一直是人们的研究热点,包括线性自适应算法和非线性自适应算法,非线性自适应算法具有更强的信号处理能力,但计算比较复杂,实际应用最多的仍然是线性自适应滤波算法。线性自适应滤波算法的种类很多,有LMS自适应滤波算法、R路自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等。 随着数字信号处理技
11、术的发展,可编程门阵列FPGA的应用迅速的普及起来,FPGA具有高逻辑密度,高可靠性,用户可编程以及可并行运算等特点,可缩短开发周期,降低成本,很好的同时满足通用性和实时性要求。自1985年Xilinx公司推出的第一块现场可编程逻辑器件至今,以FPGA为代表的数位系统现场集成获得了惊人的发展,从最初1200个可编程逻辑门电路发展到到90年代的25万个逻辑门电路。发展最早两大著名FPGA厂商即是以FPGA器件系列为代表的Xilinx公司和以CPLD器件系列为代表的Altera公司。随着集成电路技术和数字信号处理技术的日新月异,FPGA技术以现场可编程、现场修改、现场验证、现场实现的应用优势,已经
12、跃升为电子电路应用领域广受欢迎的实用技术。1.2 课题研究意义和目的 对自适应滤波算法的研究是当今自适应信号处理中最为活跃的研究课题之一。Windrow等于1967年提出的自适应滤波系统的参数能自动的调整而达到最优状况,而且在设计时,只需要很少的或根本不需要任何关于信号与噪声的先验统计知识。这种滤波器的实现差不多像维纳滤波器那样简单,而滤波器性能几乎如卡尔曼滤波器一样好。自适应滤波器与普通滤波器不同,它的冲激响应或滤波参数是随外部环境的变化而变化的,经过一段自动调节的收敛时间达到最佳滤波的要求。自适应滤波器本身有一个重要的自适应算法,这个算法可以根据输入、输出及原参量信号按照一定准则修改滤波参
13、量,以使它本身能有效的跟踪外部环境的变化。因此,自适应数字系统具有很强的自学习、自跟踪能力和算法的简单易实现性。自适应滤波技术的核心问题是自适应算法的性能问题,提出的自适应算法主要有最小均方(LMS)算法、递归最小二乘(RLS)算法及相应的改进算法如:归一化(NLMS)算法、变步长(SVSLMS)算法、递归最小二乘方格形(RLSL)算法等。这些算法各有特点,适用于不同的场合。研究自适应算法是自适应滤波器的一个关键内容。最小均方误差(LMS,The least Mean square)算法是线性自适应滤波算法中最基本的两类算法之一,其主要思想是基于最小均方误差准则,使滤波器的输出信号与期望输出信
14、号之间的均方误差最小2。由于LMS算法简单有效、鲁棒性好、易于实现,得到了广泛的应用。目前应用最多的是系统辨识、回波消除、自适应谱线增强、自适应信道均衡、语音线性预测、自适应天线阵等诸多领域。1.3 国内外研究发展状况 自适应滤波的基本理论通过几十年的发展已日趋成熟,近十几年来自适应滤波器的研究主要针对算法与硬件实现。算法研究主要是对算法速度和精度的改进,其方法大都采用软件C、MATLAB等仿真软件对算法的建模和修正。通常,自适应滤波器的硬件实现都是用DSP通用处理器(如TI的TMS320系列)。DSP器件采用改进的哈佛结构,具有独立的程序和数据空间,允许同时存取程序和数据,内置高速的硬件乘法
15、器(MAC),增强的多级流水线。DSP具有的硬件乘法模块(MAC),专用的存储器以及适用于高速数据运行的总线结构,使DSP器件具有高速的数据运算能力。目前,用DSP器件处理数字信号已经成为电子领域的研究热点。在自适应信号处理领域,对于数据处理速度在几兆赫兹以内的,通用DSP器件也是首选。迟男等人在TMS320C32芯片上扩展EPROM和RAM,实现了30阶LMS自适应滤波器,使用的刀D转化器件为AD1674,最高采样频率为l00KHz。陆斌等人采用TMS320C30数字信号处理器与IMSA110专用滤波器并行处理的方法设计出了自适应滤波器并应用于直接序列的扩频接收系统1221。赵慧民等人在TM
16、S320C31上实现了自适应权向量滤波器,完成了信号采样频率为80KHz的自适应滤波。在数据处理速度只要求在几兆赫兹以内的应用场合,这些用DSP实现的自适应滤波器能很好的满足系统实时的需求。在这种需求场合下,DSP具有不可媲美的性价比3。 但是随着信息化的进程加快和计算机科学与技术、信号处理理论与方法等的迅速发展,需要处理的数据量越来越大,对实时性和精度的要求越来越高。以迅速发展的移动通信技术为例,从IG时代只能传送语音的模拟通信,到2G时代的传送语音和数据的GSM、TDMA与CDMA1595,到2.5G时代传送语音、数据、图片、彩信MMS、简短视频、收发E-mail、网页浏览等的GPRS与C
17、DMA2000lX,到目前正处于研发与测试阶段的能够传送图像、音乐、视频流等多种媒体形式,提供包括网页浏览、电话会议、电子商务的3G通信,以及目前正在研发与憧憬中的能够传送高质量流畅的视频流与多种实时流媒体业务的4G通信。系统的功能是越来越强大,但对数据传送与处理的速率要求也是越来越高。目前广泛使用的GSM系统的数据传输速率只有9.6kbit/s,窄带CDMA传输速率也只有14.4kbit/s,但到2.5G的GPRS系统数据传输速率达到了150kbit/t左右,而根据IMT2000协议,3G通信室内或静止状态下的数据传输速率将达到2Mbit/s,到了基于全IP网络的4G时代,在慢速或静止状态下
18、数据传输速率将达到100Mbit/s。而自适应接收技术包括自适应均衡器、智能天线、自适应调制、自适应编码等,是数字通信系统中的关键技术之一。通信系统发展到3G后,几十甚至上百兆比特每秒的数据传输速率对自适应接收技术是个极大的挑战。DSP处理器虽然具有良好的通用性和灵活性,虽然其在硬件结构上得到了很大的改进,比如增加了多个硬件乘法器和使用多乘法器的并行指令等,但并没有摆脱传统的CPU工作模式,而且DSP处理器是通过软件指令完成DSP算法,其顺序的工作方式制约了其数据处理速率,而使用多片DSP组合电路和过多的外部接口电路将导致信号通道过长、过于复杂,成本也成倍地提高,因此DSP处理器对于3G和4G
19、通信中几十甚至上百兆比特每秒的数据处理速率显得无能为力。 常用的数字系统目标器件除了DSP处理器外还有专用集成电路(ASIC)、专用标准电路模块(ASSP)和现场可编程门阵列(FPGA)。ASIC和ASSP是专门针对完成某种数字信号处理算法的集成电路器件,因此其在性能指标、工作速度、可靠性和成本上优于DSP处理器。其优秀的工作性能主要源于特定的算法全部由ASSP和ASIC中的硬件电路完成。ASSP是半定制集成电路,在许多DSP算法的实现方面都优于DSP(数字信号处理器),但在功能重构,以及应用性修正方面缺乏灵活性;ASIC专用集成电路使用超大规模专用集成电路ASIC的实现方法是实用化的产品唯一
20、可行的方法,只有使用IC,才有高可靠性和可接受的价格及体积功耗等。ASIC虽然有一定的可定制性,但开发周期长,而且有一个最小定制量,在实验室研制开发阶段,开发成本非常高。现代大容量、高速度的FPGA在可重配置的数字信号处理应用领域,特别是对于任务单一、算法复杂的前端数字信号处理运算,有独特的优势。例如对于需要经常更新滤波器权系数的自适应滤波器,由于特定DSP处理器的位数是固定的,采用FPGA处理器相比DSP处理器就具有总线可调整的优势。另外,FPGA所具有的大规模并行处理能力和可编程的灵活性使得设计的系统能获得极高的处理性能,并且能够适应日益变化的标准、协议和性能需求。用FPGA实现自适应滤波
21、器,国外起步比较早,发展也非常迅速。Hesener A.于1996年提出了用FPGA实现自适应滤波器的设想,并在FPGA上实现了处理速度可达SM的8阶8位FIR滤波器。Woolfries N.等人用FPGA实现了自适应栈滤波器,并应用于图象处理。Dawood A.等人用FPGA开发了自适应FIR滤波器并与DSP处理器方案进行了比较研究。国内有一些关于自适应算法硬件实现的研究,但基本是针对自适应滤波器中的算法,如南开大学李国峰的博士论文用VHDL语言描述了正负数的运算问题和浮点数运算问题,完成了基于FIR的LMS自适应滤波器的硬件设计与逻辑综合。国防科学技术大学江和平等人讨论了自适应卡尔曼算法的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 通信工程 毕业设计 论文 基于 FPGA 自适应 滤波器 设计 研究
链接地址:https://www.31ppt.com/p-4142491.html