课程设计锥形过渡波导的损耗特性.doc
《课程设计锥形过渡波导的损耗特性.doc》由会员分享,可在线阅读,更多相关《课程设计锥形过渡波导的损耗特性.doc(21页珍藏版)》请在三一办公上搜索。
1、 课程设计锥形过渡波导的损耗特性所属课程:集成光学姓 名: 学 号: 班 级: 指导教师: 摘 要在集成光电子器件中,通常需要把两彼此分离的两波导结构连接在一起。此两分离的波导结构在结构参数上可能是相同的,也可能是不同的。同弯曲波导一样,锥形波导也是一种动态的波导器件,不能对其进行本征分析。近些年,已提出多种数值方法来优化设计过渡波导,其中光束传播法是人们最常用的方法。研究表明,光束传播法非常适宜用来研究象锥形过渡波导这样的沿光传播方向变化的动态器件。对WiWo的锥形过渡波导,利用有限差分光束传播法对几种形状侧面边界下的过渡波导进行了分析。本文就是基于该方法主要研究介绍指数型锥形过渡波导(凹形
2、)在两种不同的折射率情况下:1) 窄端口为输入端,研究输出波导输出功率随宽端口宽度的变化规律;2) 宽端口为输入端,研究输出波导输出功率随宽端口宽度的变化规律;关键词:光束传播法(BPM);指数型锥形过渡波导;波导输出功率目 录摘 要I目 录II第一章 绪 论11.1 集成光学的发展11.2 OptiBPM软件简介11.3 本课程设计的目的2第二章 BPM基本原理及常用的边界条件22.1 BPM基本原理22.2 BPM中常用的边界条件3第三章 输入端口相对宽度对锥形过渡波导传输特性的影响53.1 几种常用形状光波导介绍63.2仿真软件应用简介93.3仿真结果12致 谢17参 考 文 献18第一
3、章 绪 论1.1 集成光学的发展集成光学的概念,起源于二十世纪60年代末、70年代初,其主要思想是在共同衬底上建立各种光学器件,然后用薄膜波导将他们连接起来,从而形成一个能完成特定功能的功能芯片。然而由于当时各种器件对材料、工艺、结构的要求差异很大,技术要求十分复杂,实现所有器件的全面集成仍存在困难,集成光学的目标因而发生了一定的变化,从全光集成到可集成部分电路的部分光集成,从注重集成光学技术到研究探索各种光波导光学器件。目前集成光学研究热点主要集中在理论与器件研究。理论研究热点主要集中在以下两个方面:(1)围绕新型集成光学器件的结构设计、功能模拟与特性、参数的计算等;(2)基础理论研究。集成
4、光学基础理论研究主要集中在两类:一是基于固体物理学的基本理论和方法,研究和探讨制作微观集成光学器件的可能性。二是基于波动光学的基本理论和方法,从波导光学的角度研究集成光学器件。集成光学器件的研究主要是:在光通信领域的集成光学器件研究、集成光学传感器和其他集成光学器件,如MENS光开关阵列等。1.2 OptiBPM软件简介OptiBPM 是一套功能强大、使用者界面友善且可利用计算机辅助设计的设计仿真软件,并可设计及解决不同的积体及光纤导波问题。光束传播法,或称为 BPM是OptiBPM的核心,是一种一步接着一步来仿真光通过任何波导物质的行为,在积体光学及光纤光学中,当光传播经过一可传导的结构时,
5、其光场可以在任一点被追踪出来,BPM可以允许观察任一点被仿真出的光场分布,而且可以容许同时检查辐射光及被传播的光场。 光学波导是光组件中的重要组件,它可以在光讯号中扮演传导、耦合、开关、分光、多任务及解多任务的角色,被动波导、电光组件、发射器、接收器及电子部分装置被集成于一个芯片上,使用的技术为平面技术,其就好像微电子的技术。 OptiBPM是一套使用者界面非常友善的软件,它可以在二维及三维的波导组件上仿真光的传播,且OptiBPM三维仿真提供了任何所需要的步阶折射率(Step Index)的波导设计。应用范围:(1): Y型波导、波导分波装置(2): 波导耦合器、各类波导元件(3): 非线性
6、波导(4): 光纤设计(5): AWG设计(6): 混合光源的运算1.3 本课程设计的目的1)了解光束传播法(BPM)的原理;2)了解指数型锥形过渡波导及其在集成光路的应用;3)掌握并熟练应用波导分析模拟分析软件OptiBPM;4)窄端口为输入端,研究输出波导输出功率随宽端口宽度的变化规律;宽端口为输入端,研究输出波导输出功率随宽端口宽度的变化规律;第二章 BPM基本原理及常用的边界条件2.1 BPM基本原理BPM理论来源于波动方程,波动方程是建立在Helmhotze方程基础上的。Helmhotze方程的一般形式为: (2-1)式中,波导的几何结构完全由折射率分布来确定。考虑到在典型的波导问题
7、中,场的迅变部分是沿波导轴向传输引起的位相变化,假设波导轴只要是沿Z向,那么,可以引入一个所谓的慢变场,设: (2-2)这里是参考波数,用于表示场的平均相位变化。参考波数通常通过以参考折射率的形式表示。是任意常数,要求它的选择使是Z的慢变函数。把(2-2)式代入到Helmholtz方程便可得到慢变场所满足的方程: (2-3)方程(2-3)同确切的Helmhotze方程是完全等效的。若随z的变化足够慢,方程(2-3)的第一项同第二项相比就可以忽略不计,这就是大家熟悉的慢变包络近似,也称为傍轴或抛物近似。经运算,可得到: (2-4)这是基本的三维标量形式的BPM方程,若忽略与y有关的项就可得到二维
8、标量形式的BPM方程。给定一个输入场,上述方程决定了在空间内的场分布。对许多具体的问题,迅变位相因子的引入,可使得在数值计算中剖分网格可在纵向(即z方向)大于光波长,这很大程度上提高了数值技术的效率。此外,和z有关的二次微分项的忽略,使二阶边值问题,转变为一阶初始值问题。这一点也同样提高了BPM方法的计算效率。但慢变包络近似使我们只能考虑波导中沿z轴附近的传播场,这也对参考折射率的选择有了限制。而对于如多模干涉波导器件中所存在的有复杂的位相变化的场,利用该式就不能进行精确地模拟。2.2 BPM中常用的边界条件边界的处理是人们应用BPM时所必须面对的一个重要的问题,不好的边界条件,会使入射到边界
9、处的光反射回计算窗口,引起计算误差,因此选择合适的边界条件是很关键的。BPM中常用边界条件除了传统的Dirichlet条件和Neumann条件外,最常用的还有吸收边界条件(Absorbing Boundary Conditions,ABC)、透明边界条件(Transparent Boundary Conditions,TBC)、完美匹配层条件(Perfectly Matched Layer,PML)和补偿算子条件(Complementary Operators Method,COM)等。吸收边界条件是人为在计算区域外加一层损耗层,通过选择合适的吸收系数和吸收层厚度使出射光波在到达吸收层边界时衰
10、减至零。最早的傅立叶变换BPM 方法对吸收边界处理是在边界处乘上一个合适的复介电常数, 以吸收边界的反射,较早的差分BPM 采用的也是类似的方法,需要选择合适的吸收常数是这种边界条件的关键。这种方法的难点在于如何选取合适的吸收系数和吸收层厚度,并且也没有一个普遍的选取方法。为了解决这些问题,人们又提出了许多新的吸收边界条件。这里主要介绍透明边界条件和完美匹配层条件。一、TBC边界条件Hadely首先提出了透明边界条件(Transparent Boundary condition ,TBC),它是在边界附近把光场近似看成是平面波,并以平面波的形式在边界处向外透射出去。假定光在z向传播过程中,有一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 课程设计 锥形 过渡 波导 损耗 特性
链接地址:https://www.31ppt.com/p-4140211.html