毕业设计(论文)用于波分复用的全光纤通信技术.doc
《毕业设计(论文)用于波分复用的全光纤通信技术.doc》由会员分享,可在线阅读,更多相关《毕业设计(论文)用于波分复用的全光纤通信技术.doc(27页珍藏版)》请在三一办公上搜索。
1、毕 业 设 计(论 文)题 目 用于波分复用的全光纤通信技术姓 名 所在学院 电子与电气学院 专业班级 计算机通信二班 学 号 指导教师 日 期 2012 年 6 月 2 日 摘 要 近年来,通信行业发展迅速,大量的通信新业务不断涌现,信息高速公路正在全球范围内以惊人的速度发展建立起来。所有这些应用都对大容量通信提出了越来越高的要求,使得光纤通信技术向着速度高、容量大、可伸缩性好的方向发展。 波分复用(WDM)系统的发展正是适应了这一时代潮流。应用这种技术可以在同一根光纤上传输多路信道,从而使通信容量成倍的扩大。不过,随着掺铒放大器(EDFA)在系统中的大量使用,也会带来一系列相关问题,如:色
2、散、增益失衡、非线性效应等等。在建立一个WDM光纤通信系统的时候,必须很好地解决这些问题。在本文中,将讨论这些WDM系统的关键技术,并给出一个WDM光纤通信系统的总体设计。主要工作如下: 1在对国内外WDM系统理论和实验研究进展进行广泛研究的基础上,重点讨论实现WDM系统的关键技术和如何克服色散、增益失衡和非线性等影响性能的因素。 2基于国际电联的ITU-T系列参考标准和信息产业部的相关标准,进行3210 Gbits480km的WDM光纤通信系统总体设计和规划。给出系统的详细参数并对系统性能进行相关计算,讨论优化系统的技术和手段。关键词:WDM 光纤通信 传输系统 大容量系统AbstractR
3、ecently communication industry develop very fast,a large new communication services appered,the world is now building Cyber-high way. All these bring the need for larger and larger communication capacity,which stimulate fiber communication system develop towards adaptive,high speed,large capacity da
4、ta transmission.Wavelength division multiplexing (WDM) system developed following the trend. The system can greatly increase the transmission capacity by increasing th channels in a single fiber. But multi-wavelength transmission and thd employment of Erbiumdoped Droped Fiber Amplifier (EDFA) will c
5、ause a number of new problems,such as chromatic dispersion,gain fluctuation,fluctuation and non-linear effects etc. Ths problems should be solved in building WDM fiber transmission system. In this paper,the key technologeis in WDM system are discussed. The main parts in this project are as follows:1
6、.Based on the widely studing of references,the development on the theory and experiments of WDM system is reviewed. The degradation of the performance of the system,which is caused by chromatic dispersion,gain fluctuation and fluctuation and non-linear effects in fiber,is analysed and some scenarios
7、 are suggested to solve them.2.Based on the revelant standards of ITU-T and related references,is designed. The general scheme of 32 X 10Gbit/s 480km WDM transmission system are designed for the most systems which fiber are model G.652. The parameters of the system are defined,and the performance is
8、 calculated.Key words: WDM; Optical fiber communication; Transmission system; Large capacity system; 目 录摘 要iAbstractii第一章 引言1第二章 全光纤OWDM通信系统22.1 波分复用技术在光传输系统中的应用22.2 系统构成描述22.2.1 光纤激光器22.2.2 EDFA掺铒光纤放大器42.2.3 FBG滤波器42.2.4 光检测器5 2. 2. 5 OWDM系统的指标. 62.3 波分复用技术的优点及其特点7第三章 光纤通信技术原理及存在的问题8第四章 光纤通信技术的研究现状
9、与前景124.1 波分复用器在光纤通信中的应用134.2 光纤技术的发展及应用趋势144.3 波分复用未来的发展趋势17结 论20参考文献21致 谢23第一章 引言 在新一代高速全光通信网的研究中,作为相应的用于传输节点的高速信息传输技术,光波分复用(OWDM)技术必将得到普遍推广,将成为未来全光高速率、长距离、大容量光通信系统及宽带综合业务数字网(B-ISDN)的重要基础技术之一。这一点国际上已有共识。目前已实用化的OWDM系统从总体上看有一个共同点,即它们均是光电器件与光纤的组合体。这样就势必带来光纤与光电器件的正确衔接和耦合问题。实际上无论多么先进的系统也无法避免这种衔接带来的损耗以及种
10、种不便和不可靠因素,而且这种通信系统实质上仍属于光电子通信模式。目前传统的以电子技术为基础的信息传输技术的速率提高大大落后于光子技术,其微电子集成电路的极限速率为10 Gbit/s.所以其传输速率、容量等最终受到通信制式制约。为了克服这一电子瓶颈,急需发展以光子技术为基础的全光信息通信技术,以有效利用光纤传输系统的固有传输能力。而光纤自身的潜在带宽容量远超过这一数字,因此应设法挖掘其潜藏的带宽,充分发挥光纤可传输更高数字速率的优势。基于各种全光纤型器件的实现,将以光纤Bragg光栅(FBG)为基础的窄带型FBG滤波器、光纤激光器、光纤耦合器、掺铒光纤放大器(EDFA)、光检测器以及各种高性能的
11、全光纤器件组合到一条传输光纤中,构成具有相关性能的光子组件或光子系统,即所谓的全光纤(All-fibers)集成1,2。可以方便地在一条光纤线路上同时实现对不同波长信道的高速数据的密集OWDM和全光纤复用。 第二章 全光纤OWDM通信系统2.1波分复用技术在光传输系统中的应用波分复用(WDM)是指在一根光纤中同时传输两个或多个光载波信号。传播的方向可以是同向的,也可以是反向的。根据 ITU-T 的有关协议,规定 1552.52nm波长为基准,信道间隔 =0.8nm,或是 0.8nm 的倍数关系。目前多数的间隔是按照这个方法执行的由于信道间隔不同,目前的波分复用大体上分为三种情况:密集波分复用(
12、DWDM)、粗波分复用(CWDM)和宽波分复用(WWDM),在频宽 1000GHz 情况下,其波长间隔分别小于 8nm、50nm 和大于 50nm。对光源波长稳定性的要求是 5。一般来说,WDM 系统结构主要由以下五部分组成:光发射机、光中继放大、光接收机、光监控信道和网络管理系统光发射机是 WDM 系统的核心,根据 ITU-T 的建议和标准,除了对 WDM 系统中发射激光器的中心波长有特殊要求以外,还需要根据 WDM 系统的不同应用来选择有一定容限的发射机。在发送端首先将来自各终端设备输出的光信号,利用光转发器(OTU)把符合 ITU-TG.957 建议的非特定波长的光信号转换成具有稳定的特
13、定波长的光信号;利用合波器合成多通路光信号;通过光功率放大器(BA)放大输出多通路光信号。光信号在进行一段距离光纤传输后,需要进行光中继放大,在进行整形后,信号传至接收端。在接收端,信号在经过前置放大器放大后,通过分波器分离成特定波长的光信道,要求接收机不仅要满足对光信号要高度灵敏,还要能承受一定的噪声,要有足够的带宽。光监控信道主要功能是监控系统内各信道的传输情况,在发送端产生光监控信号与光信号合波输出,在接收端将接收到的光信号进行分波,分离出监控信号和光信号。网络管理系统主要通过传输开销实现对 WDM 系统的配置管理、故障管理、性能管理、安全管理等功能,是与光网络传输相关的高层管理系统2.
14、2系统构成描述光纤OWDM通信系统将由一系列新型全光纤器件构成。诸如,光纤激光器、EDFA、FBG滤波器及光检测器等。下面,将对该系统所涉及的几种重要的基础性器件作一些概述。2.2.1光纤激光器光纤激光器由于掺铒光纤具有增益特性, 因此,当用980 nm或1 480 nm的泵浦激光激发时光纤中铒离子就会产生增益放大。只要引用适当的正反馈,激光放大器就会转变为光纤振荡7器,即光纤激光器。而谐振腔只能反馈某一特定波长的光,具有选频特性。输出单频激光,再经过光隔离器(ISO)就可输出窄线宽、高功率、低噪声的信号激光。该激光器具有以下特点:1)激光介质又是导波介质,耦合效率高,加之纤芯很细,易形成高功
15、率密度,其几何尺寸又具有很高的“表面积/体积”比,故该激光器具有很高的转换效率和很低的激光阈值;2)光纤谐振腔的腔镜可直接制作在光纤截面上,或采用光纤耦合器方式构成谐振腔。加之光纤具有极好的柔绕性。因此光纤激光器可以设计得相当小巧灵活;3)光纤激光器具有良好的光纤兼容性、输出稳定性和单色性。与半导体激光器(LD)相比,它有较高的光输出功率、较低的相对强度噪声(RIN)、极窄的线宽。光纤激光器的单模输出可达到10 mW以上,其RIN为发射噪声极限。用有效的Er3+Yb3+光纤研制出7.6 mW单频激光器,其线宽小于2.5 kHz.显然优于线宽10 MHz的分布反馈(DFB)激光器。OWDM传输系
16、统对光源的首要要求是可调谐性。光纤激光器的优点之一就是连续波长可调。当光栅和封包的光纤两者受力和受热均匀时,没有跳模现象。光纤长几厘米的光纤激光器在所加应变为1%时,其调谐范围(大于10nm小于12nm)。2.2.2 EDFA掺铒光纤放大器以EDFA为代表的掺铒光纤放大技术的成功,使得光纤通信容量及传输距离剧增。不仅迅速地扩大了光纤传输能力,而且对光发送器、光接收器以及光中继器的高速化具有强大的推动力。目前该器件已步入实用化阶段。EDFA在LD足够大的输出功率抽运下,能够对波长1.55m窗口的一定带宽范围内提供稳定可靠的增益。因此说所用泵浦源的高功率和长寿命是保证EDFA性能的主要因素。掺铒光
17、纤可以在几个波长上被有效地激励3,4。首先突破是采用1 480 nm InGaAsP多层量子阱(MQW)激光源;该波长处的泵浦增益系数较高,而且其波长与现有实用化的InGaAsP激光器相匹配。对980 nm的泵浦源而言,虽然它具有较高的量子转换效率,噪声低,是发展方向。但由于980 nm的LD性能还很不稳定,获得高功率泵浦源的技术比较困难,其长期寿命也是个问题。而且其输出模场的椭圆度较高,耦合入掺铒光纤(EDF)的泵浦能量相对较低。相对而言, 1 480 nm半导体激光管的性能较好,并且它和单模光纤的耦合效率也可达到65%以上。所以目前泵浦源多选用1 480 nm的MQW In-GaAsP激光
18、器,其输出功率可达100 mW.当然泵浦功率也不宜过大,主要受限于光纤的布里渊散射。EDFA高效率、高增益、低噪声、宽频带、与偏振状态无关,易与传输光纤连接,连接损耗小。且光放大性能与调制方式以及传输速率无关。由此可构成各种速率的OWDM传输系统,应用灵活。在光纤传输线路中间隔一定距离设置光纤放大器,以替代传统的再生中继的光/电和电/光转换,使线路成为全光传输系统。通常为扩展通信距离,必须以适当的方式补偿光纤传输的损耗,即在线路中插入必要的中继系统(均采用光-电-光转换形式的中继器),即相当于插入一对光端机。这种中继器的缺点是显而易见的,复杂、使用EDFA作为中继器则从根本上解决了这些问题。可
19、使光纤线路中继距离从现在的3050 km扩大到80120 km.同时由于整条线路是全光传输,整个线路的中间不需要任何光/电和电/光转换,省去了电信号的处理和放大,大大简化了系统装置,减少了器件,提高了系统的可靠性。且同一EDFA可以对1.55m窗口很宽的频带内的各种不同波长信号提供同样的增益。即多路光载波只需同一EDFA,非常经济。2.2.3 FBG滤波器在同一条光纤中复用和解复用多个频域排列紧密的波长信道,将极大地增加光通信的容量。实际上OWDM技术的关键之一是选用高性能的光波分复用器。基于全光纤通信构思,将新型全光纤器件FBG滤波器用于OWDM系统设计,以替代传统OWDM器件,更具先进性。
20、目前通常使用的OWDM器件可分为利用熔融拉锥技术制备的光纤型波分复用器;采用多层介质薄膜的干涉滤波器型波分复用器;利用闪耀光栅的分光原理制备的光栅型波分复用器以及导波干涉型波分复用器等。干涉滤波器复用器的复用度较低,且只有采取特殊措施时才可能复用同一光纤传输窗口的信号;而光栅型波分复用器复用度虽高,但技术复杂。FBG具有确定的中心反射波长。其最大中心反射率可高可低,最高可接近100%.FBG的反射带宽(FWHM)有大的制造调节范围。目前制造技术可达到0.02840 nm,FBG对于光传播的附加损耗很小,约1 dB以下。由于FBG具有很好的选频作用,故这一器件在频域中呈现出丰富多彩的传输特性,能
21、研制出性能优异的光纤带通滤波器以及各种全光纤集成器件。由于FBG的纤芯中的周期性折射率变化所产生的Bragg反射特性,使FBG实质是一种波长选择分布反射型带阻滤波器。利用FBG反射Bragg共振波长附近的光,将其与-3 dB光纤环路器相组合,既可得到在OWDM系统中具有重要作用的功能性器件FBG滤波器。近年来,一些发达国家已投入相当的人力、物力,开展FBG及全光纤器件与集成系统的研究。美国AT&T的研究工作起步较早。1989年Meltz等人首次利用紫外光写入法研制成功FBG滤波器6。Chevnikov S V7也报道了用单个准分子激光器制作近100%反射率、FWHM为0.05 nm的FBG滤波
22、器。其制作工艺简单,重复性好,可以灵活写入任何波长。日本NTT研制的FBG已生产出实用型产品。中心波长5001 600 nm,反射率为0.01%99%, FWFM为0.120 nm8。国内的研制工作正加紧进行,其制备工艺日趋成熟。中科院上海光机所研制的FBG滤波器中心波长1 530.4 nm,带宽1 nm,信道隔离度15.5 dB,传输损耗低于0.7 dB(见赵浩,丁浩,刘斌等.光纤光折变光栅型光通信滤波器.深圳:深圳大学,全国光电子学年会论文集, 1996, 179)。中科院半导体研究所国家光电子中心与北方交通大学光波所合作开展研究,初步结果3 dB带宽0.4 nm,中心波长1 559.4
23、nm,反射率98.5%(见葛璜,安贵仁,任泽英等.紫外写入光纤布拉格光栅的实验研究.深圳:深圳大学,全国光电子学年会论文集, 1996, 172)2.2.4 光检测器将光信号转换成电信号的直接检测器件常用雪崩型光电二极管(APD)和PIN-PD.前者有倍增特性,接收灵敏度高,但结构较复杂,且由于带宽和噪声等问题难以提高速率。因此,为了现高速检测,需要研究新型的APD.这要从减小结电容,降低雪崩上升时间以及改进结构、材料方面入手。已有报道,采用超晶格薄模结构制作出10 Gbit/s光通信用APD,能无中继传输100 km.PIN-PD结构简单,容易加宽频带。因无倍增作用,接收灵敏度低。近年来,由
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业设计 论文 用于 波分复用 光纤通信 技术
链接地址:https://www.31ppt.com/p-4138995.html