《数学分析之数列极限.doc》由会员分享,可在线阅读,更多相关《数学分析之数列极限.doc(26页珍藏版)》请在三一办公上搜索。
1、第二章数列极限 教学目的:1.使学生建立起数列极限的准确概念,熟练收敛数列的性质;2.使学生正确理解数列收敛性的判别法以及求收敛数列极限的常用方法,会用数列极限的定义 证明数列极限等有关命题。要求学生:逐步建立起数列极限的 概念.深刻理解数列发散、单调、有界和无穷小数列等有关概念.会应用数列极限的 定义证明有关命题,并能运用 语言正确表述数列不以某定数为极限等相应陈述;理解并能证明收敛数列、极限唯一性、单调性、保号性及不等式性质;掌握并会证明收敛数列的四则运算定理、迫敛性定理及单调有界定理,会用这些定理求某些收敛数列的极限;初步理解柯西准则在极限理论中的重要意义,并逐步学会应用柯西准则判定某些
2、数列的敛散性; 教学重点、难点:本章重点是数列极限的概念;难点则是数列极限的 定义及其应用. 教学时数:14学时 1 数列极限的定义 教学目的:使学生建立起数列极限的准确概念;会用数列极限的定义证明数列极限等有关命题。教学重点、难点:数列极限的概念,数列极限的定义及其应用。教学时数:4学时一、 引入新课:以齐诺悖论和有关数列引入 二、讲授新课: (一)数列:1.数列定义整标函数.数列给出方法: 通项,递推公式.数列的几何意义.2.特殊数列: 常数列,有界数列,单调数列和往后单调数列. (二) 数列极限: 以 为例. 定义 ( 的 “ ”定义 )定义 ( 数列 收敛的“ ”定义 )注:1.关于
3、:的正值性, 任意性与确定性,以小为贵; 2.关于:的存在性与非唯一性,对只要求存在,不在乎大小.3.的几何意义.(三)用定义验证数列极限: 讲清思路与方法. 例1 例2 例3 例4 证 注意到对任何正整数 时有 就有 于是,对 取 例5 证法一 令 有 用Bernoulli不等式,有 或 证法二 (用均值不等式) 例6 证 时, 例7 设 证明 (四)收敛的否定: 定义 ( 的“ ”定义 ).定义 ( 数列 发散的“ ”定义 ).例8 验证 (五)数列极限的记註: 1.满足条件“ ”的数列2. 改变或去掉数列的有限项, 不影响数列的收敛性和极限. 重排不改变数列敛散性: 3.数列极限的等价定
4、义: 对 任有理数 对任正整数 (六)无穷小数列: 定义.Th2.1 ( 数列极限与无穷小数列的关系 ). 2 收敛数列的性质(4学时) 教学目的:熟悉收敛数列的性质;掌握求数列极限的常用方法。教学重点、难点:迫敛性定理及四则运算法则及其应用,数列极限的计算。教学时数:4学时一. 收敛数列的性质: 1.极限唯一性:( 证 ) 2.收敛数列有界性 收敛的必要条件:( 证 ) 3.收敛数列保号性: Th 1 设 若 则 ( 证 )由于已知条件中对都成立,而结论是比较数列项的关系,证明时只需找到一个,使与之对应的N满足条件即可! 系1 设 若 , (注意“ = ” ;并注意 和 的情况 ).由于结论
5、是比较数列极限的关系,证明时必须对都成立! 系2 设 或. 则对(或 (或 系3 若 则对 绝对值收敛性见后. 4. 迫敛性 ( 双逼原理 ): Th 2 ( 双逼原理 ). ( 证 ) 5. 绝对值收敛性: Th 3 ( 注意反之不正确 ). ( 证 ) 系 设数列 和 收敛, 则 ( 证明用到以下6所述极限的运算性质 ). 6. 四则运算性质: Th 4 ( 四则运算性质, 其中包括常数因子可提到极限号外 ). ( 证 ) 7. 子列收敛性: 子列概念.Th 5(数列收敛充要条件) 收敛的任何子列收敛于同一极限. Th 6 (数列收敛充要条件) 收敛子列和收敛于同一极限. Th 7 ( 数
6、列收敛充要条件 ) 收敛 子列 、 和 都收敛. ( 简证 )二.利用数列极限性质求极限: 两个基本极限: 1利用四则运算性质求极限: 例1 註: 关于 的有理分式当 时的极限情况例2 填空: 例3 例4 2. 双逼基本技法: 大小项双逼法,参阅4P53. 例5 求下列极限: 例6 ( 例7 求证 例8 设 存在. 若 则 三.利用子列性质证明数列发散: 例9 证明数列 发散. 3 收敛条件(4学时) 教学目的:使学生掌握判断数列极限存在的常用工具。教学要求:1. 掌握并会证明单调有界定理,并会运用它求某些收敛数列的极限;2. 初步理解Cauchy准则在极限理论中的主要意义,并逐步会应用Cau
7、chy准则判断某些数列的敛散性。教学重点:单调有界定理、Cauchy收敛准则及其应用。教学难点:相关定理的应用。教学方法:讲练结合。一数列收敛的一个充分条件 单调有界原理:回顾单调有界数列. Th 1 ( 单调有界定理 ). ( 证 )例1 设 证明数列 收敛.例2 ( 重根号),证明数列 单调有界, 并求极限. 例3 求 ( 计算 的逐次逼近法, 亦即迭代法 ).解 由均值不等式, 有有下界;注意到对 有 有 , 二、收敛的充要条件Cauchy收敛准则: 1Cauchy列: 2Cauchy收敛准则: Th 2 数列 收敛, ( 或数列 收敛,Th 2 又可叙述为:收敛列就是Cauchy列.
8、(此处“就是”理解为“等价于”). ( 简证必要性 ) 例4 证明:任一无限十进小数 的不足近似值所组成的数列 收敛. 其中 是 中的数.证 令 有 例5 设 试证明数列 收敛.三. 关于极限 证明留在下节进行.例6 例7 例8 四.数列 单调有界证法欣赏: Cauchy (17891857 ) 最先给出这一极限,Riemann(18261866)最先给出以下证法一.证法一 ( Riemann最先给出这一证法) 设 应用二项式展开,得 ,+ 注意到 且 比 多一项 即 . 有界.综上, 数列 单调有界.评註: 该证法朴素而稳健, 不失大将风度. 证法二 ( 利用Bernoulli不等式 )注意
9、到Bernoulli不等式 为正整数 ), 有 由 利用Bernoulli不等式,有 .为证 上方有界, 考虑数列 可类证 . 事实上, (此处利用了Bernoulli不等式 ) .显然有 有 即数列 有上界.评註: 该证法的特点是惊而无险,恰到好处.证法三 ( 利用均值不等式 ) 在均值不等式 中, 令 就有 即 .令 可仿上证得 时 , ( 时无意义, 时诸 = , 不能用均值不等式. ) 当 时, 由 由 . 4.证法四 ( 仍利用均值不等式 ) 即 . 有界性证法可参阅上述各证法.证法五 先证明:对 和正整数 ,有不等式 事实上, 对 有 试证明 是 内的常值函数. 例5 求极限注意= 有界 例6 求 和 .解法一 又 解法二 , 由 且原式极限存在,即 .例7 . 求 .注意 时, 且 . 先求 由Heine归并原则即求得所求极限. 例8 求和.并说明极限 是否存在.解 ; 可见极限 不存在.
链接地址:https://www.31ppt.com/p-4134423.html