初中数学二次函数易错题汇编及答案.doc
《初中数学二次函数易错题汇编及答案.doc》由会员分享,可在线阅读,更多相关《初中数学二次函数易错题汇编及答案.doc(17页珍藏版)》请在三一办公上搜索。
1、最新初中数学二次函数易错题汇编及答案一、选择题1如图是二次函数的图象,有下面四个结论:;,其中正确的结论是 ABCD【答案】D【解析】【分析】根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以;时,由图像可知此时,所以;由对称轴,可得;当时,由图像可知此时,即,将代入可得.【详解】根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以,故正确.时,由图像可知此时,即,故正确.由对称轴,可得,所以错误,故错误;当时,由图像可知此时,即,将中变形为,代入可得,故正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解
2、决问题。2抛物线yx2+bx+3的对称轴为直线x1若关于x的一元二次方程x2+bx+3t0(t为实数)在2x3的范围内有实数根,则t的取值范围是()A12t3B12t4C12t4D12t3【答案】C【解析】【分析】根据给出的对称轴求出函数解析式为yx22x3,将一元二次方程x2bx3t0的实数根看做是yx22x3与函数yt的交点,再由2x3确定y的取值范围即可求解.【详解】解:yx2bx3的对称轴为直线x1,b2,yx22x3,一元二次方程x2bx3t0的实数根可以看做是yx22x3与函数yt的交点,当x1时,y4;当x3时,y12,函数yx22x3在2x3的范围内12y4,12t4,故选:C
3、【点睛】本题考查二次函数的图象及性质,能够将方程的实数根问题转化为二次函数与直线的交点问题是解题关键3对于二次函数,下列说法正确的个数是()对于任何满足条件的,该二次函数的图象都经过点和两点;若该函数图象的对称轴为直线,则必有;当时,随的增大而增大;若,是函数图象上的两点,如果总成立,则A1个B2个C3个D4个【答案】B【解析】【分析】根据二次函数的图象与性质(对称性、增减性)逐个判断即可【详解】对于当时,则二次函数的图象都经过点当时,则二次函数的图象都经过点则说法正确此二次函数的对称轴为,则说法错误由二次函数的性质可知,抛物线的开口向下,当时,y随x的增大而增大;当时,y随x的增大而减小因则
4、当时,y随x的增大而增大;当时,y随x的增大而减小即说法错误由总成立得,其对称轴解得,则说法正确综上,说法正确的个数是2个故选:B【点睛】本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键4已知二次函数yax2+bx+c(a0)的图象如图所示,则下列结论:(1)4a+2b+c0;(2)方程ax2+bx+c0两根都大于零;(3)y随x的增大而增大;(4)一次函数yx+bc的图象一定不过第二象限其中正确的个数是()A1个B2个C3个D4个【答案】C【解析】【分析】由图可知,x=2时函数值小于0,故(1)正确,函数与x轴的交点为x=1.x=3,都大于0,故(2)
5、正确 ,由图像知(3)错误,由图象开口向上,a0,与y轴交于正半轴,c0,对称轴x=1,故b0,bc0,即可判断一次函数yx+bc的图象.【详解】由x2时,y4a+2b+c,由图象知:y4a+2b+c0,故正确;方程ax2+bx+c0两根分别为1,3,都大于0,故正确;当x2时,由图象知:y随x的增大而减小,故错误;由图象开口向上,a0,与y轴交于正半轴,c0,x=10,b0,bc0,一次函数yx+bc的图象一定过第一、三、四象限,故正确;故正确的共有3个,故选:C【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义.5抛物线y1=ax2+bx+c与直线y2=mx+n的图象如
6、图所示,下列判断中:abc0;a+b+c0;5a-c=0;当x或x6时,y1y2,其中正确的个数有() A1B2C3D4【答案】C【解析】【分析】【详解】解:根据函数的开口方向、对称轴以及函数与y轴的交点可知:a0,b0,c0,则abc0,则正确;根据图形可得:当x=1时函数值为零,则a+b+c=0,则错误;根据函数对称轴可得:-=3,则b=-6a,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则正确;根据函数的交点以及函数图像的位置可得正确.点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a大于零,如果函数开口向下,则a小于零;
7、如果函数的对称轴在y轴左边,则b的符号与a相同,如果函数的对称轴在y轴右边,则b的符号与a相反;如果函数与x轴交于正半轴,则c大于零,如果函数与x轴交于负半轴,则c小于零;对于出现a+b+c、a-b+c、4a+2b+c、4a-2b+c等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.6若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”例如:P(1,0)、Q(2,2)都是“整点”抛物线ymx24mx+4m2(m0)与x轴交于点A、B两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有
8、七个整点,则m的取值范围是()Am1Bm1C1m2D1m2【答案】B【解析】【分析】画出图象,利用图象可得m的取值范围【详解】ymx24mx+4m2m(x2)22且m0,该抛物线开口向上,顶点坐标为(2,2),对称轴是直线x2由此可知点(2,0)、点(2,1)、顶点(2,2)符合题意当该抛物线经过点(1,1)和(3,1)时(如答案图1),这两个点符合题意将(1,1)代入ymx24mx+4m2得到1m4m+4m2解得m1此时抛物线解析式为yx24x+2由y0得x24x+20解得 x轴上的点(1,0)、(2,0)、(3,0)符合题意则当m1时,恰好有 (1,0)、(2,0)、(3,0)、(1,1)
9、、(3,1)、(2,1)、(2,2)这7个整点符合题意m1【注:m的值越大,抛物线的开口越小,m的值越小,抛物线的开口越大】答案图1(m1时) 答案图2( m时)当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意此时x轴上的点 (1,0)、(2,0)、(3,0)也符合题意将(0,0)代入ymx24mx+4m2得到004m+02解得m此时抛物线解析式为yx22x当x1时,得点(1,1)符合题意当x3时,得.点(3,1)符合题意综上可知:当m时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,1)、(3,1)、(2,2)、(2,1)都符合题意,共有9个整
10、点符合题意,m不符合题m综合可得:当m1时,该函数的图象与x轴所围成的区域(含边界)内有七个整点,故选:B【点睛】考查二次函数图象与系数的关系,抛物线与x轴的交点,画出图象,数形结合是解题的关键.7一列自然数0,1,2,3,100依次将该列数中的每一个数平方后除以100,得到一列新数则下列结论正确的是()A原数与对应新数的差不可能等于零B原数与对应新数的差,随着原数的增大而增大C当原数与对应新数的差等于21时,原数等于30D当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解【详解】解:设原数为m,则新数为 ,设新数与原数的差为y则
11、, 易得,当m0时,y0,则A错误 当 时,y有最大值则B错误,D正确当y21时,21解得30,70,则C错误故答案选:D【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号8足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567h08141820201814下列结论:足球距离地面的最大高度为20m;足球飞行路线的对称轴是直线;足球被踢出9s时落地;足球被踢出1.5s时,距离地面的高度是11m. 其中
12、正确结论的个数是( )A1B2C3D4【答案】B【解析】【分析】【详解】解:由题意,抛物线的解析式为y=ax(x9),把(1,8)代入可得a=1,y=t2+9t=(t4.5)2+20.25,足球距离地面的最大高度为20.25m,故错误,抛物线的对称轴t=4.5,故正确,t=9时,y=0,足球被踢出9s时落地,故正确,t=1.5时,y=11.25,故错误,正确的有,故选B9函数在同一直角坐标系内的图象大致是()ABCD【答案】C【解析】【分析】根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除【详解】当a0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二
13、、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=-0,且a0,则b0,但B中,一次函数a0,b0,排除B故选C10已知在平面直角坐标系中,有两个二次函数及图象,将二次函数的图象按下列哪一种平移方式平移后,会使得此两个函数图象的对称轴重叠( )A向左平移2个单位长度B向右平移2个单位长度C向左平移10个单位长度D向右平移10个单位长度【答案】D【解析】【分析】将二次函数解析式展开,结合二次函数的性质找出两二次函数的对称轴,二者做差后即可得出平移方向及距离【详解】解:ym(x3)(x9)mx212mx27m,yn(x2)(x6)nx28nx12n,二次函数ym(x3)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 二次 函数 易错题 汇编 答案
链接地址:https://www.31ppt.com/p-4133511.html