人教版八年级数学下册二次根式的知识点汇总.doc
《人教版八年级数学下册二次根式的知识点汇总.doc》由会员分享,可在线阅读,更多相关《人教版八年级数学下册二次根式的知识点汇总.doc(4页珍藏版)》请在三一办公上搜索。
1、二次根式的知识点汇总知识点一: 二次根式的概念 形如()的式子叫做二次根式。注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,等是二次根式,而,等都不是二次根式。 例1下列式子,哪些是二次根式,哪些不是二次根式:、(x0)、-、(x0,y0) 分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0知识点二:取值范围1、 二次根式有意义的条件:由二次根式的意义可知,当a0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。2、 二次根式无意义的条件:因负数没有
2、算术平方根,所以当a0时,没有意义。 例2当x是多少时,在实数范围内有意义? 例3当x是多少时,+在实数范围内有意义?知识点三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。 例4(1)已知y=+5,求的值(2)若+=0,求a2004+b2004的值知识点四:二次根式()
3、的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。注:二次根式的性质公式()是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若,则,如:,. 例1 计算 1()2 2(3)2 3()2 4()2例2在实数范围内分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。注:1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 八年 级数 下册 二次 根式 知识点 汇总
链接地址:https://www.31ppt.com/p-4132964.html