《电厂基础知识问答4.doc》由会员分享,可在线阅读,更多相关《电厂基础知识问答4.doc(10页珍藏版)》请在三一办公上搜索。
1、常见母线接线方式有何特点?答:1)、单母线接线:单母线接线具有简单清晰、设备少、投资小、运行操作方便且有利于扩建等优点,但可靠性和灵活性较差。当母线或母线隔离开关发生故障或检修时,必须断开母线的全部电源。 2)双母线接线:双母线接线具有供电可靠,检修方便,调度灵活或便于扩建等优点。但这种接线所用设备多(特别是隔离开关),配电装置复杂,经济性较差;在运行中隔离开关作为操作电器,容易发生误操作,且对实现自动化不便;尤其当母线系统故障时,须短时切除较多电源和线路,这对特别重要的大型发电厂和变电所是不允许的。3)单、双母线或母线分段加旁路:其供电可靠性高,运行灵活方便,但投资有所增加,经济性稍差。特别
2、是用旁路断路器带路时,操作复杂,增加了误操作的机会。同时,由于加装旁路断路器,使相应的保护及自动化系统复杂化。4)3/2 及 4/3 接线:具有较高的供电可靠性和运行灵活性。任一母线故障或检修,均不致停电;除联络断路器故障时与其相连的两回线路短时停电外,其它任何断路器故障或检修都不会中断供电;甚至两组母线同时故障(或一组检修时另一组故障)的极端情况下,功率仍能继续输送。但此接线使用设备较多,特别是断路器和电流互感器,投资较大,二次控制接线和继电保护都比较复杂。5)母线变压器发电机组单元接线:它具有接线简单,开关设备少,操作简便,宜于扩建,以及因为不设发电机出口电压母线,发电机和主变压器低压侧短
3、路电流有所减小等特点。什么是电力系统综合负荷模型?其特点是什么?在稳定计算中如何选择?答:电力系统综合负荷模型是反映实际电力系统负荷的频率、电压、时间特性的负荷模型,一般可用下式表达:P=fp(v,f,t) Q=fq(v,f,t)上式中,若含有时间 t 则反映综合负荷的动态特性,这种模型称为动态负荷模型(动态负荷模型主要有感应电动机模型和差分方程模型两种。);反之,若不含有时间 t,则称为静态负荷模型(静态负荷模型主要有多项式模型和幕函数模型两种,其中多项式模型可以看作是恒功率(电压平方项)、恒电流(电压一次方项)、恒阻抗(常数项)三者的线性组合)。电力系统综合负荷模型的主要特点是:具有区域性
4、-每个实际电力系统有自己特有的综合负荷模型,与本系统的负荷构成有关;具有时间性:既是同一个电力系统,在不同的季节,具体不同的综合负荷模型;不唯一性:研究的问题不同,采用的综合负荷模型也不同; 在稳定计算中综合负荷模型的选择原则是:在没有精切综合负荷模型的情况下,一般按40%恒功率;60%恒阻抗计算。什么叫不对称运行?产生的原因及影响是什么?答:任何原因引起电力系统三相对称(正常运行状况)性的破坏,均称为不对称运行。如各相阻抗对称性的破坏,负荷对称性的破坏,电压对称性的破坏等情况下的工作状态。非全相运行是不对称运行的特殊情况。 不对称运行产生的负序、零序电流会带来许多不利影响。 电力系统三相阻抗
5、对称性的破坏,将导致电流和电压对称性的破坏,因而会出现负序电流,当变压器的中性点接地时,还会出现零序电流。当负序电流流过发电机时,将产生负序旋转磁场,这个磁场将对发电机产生下列影响:发电机转子发热;机组振动增大;定子绕组由于负荷不平衡出现个别相绕组过热。不对称运行时,变压器三相电流不平衡,每相绕组发热不一致,可能个别相绕组已经过热,而其它相负荷不大,因此必须按发热条件来决定变压器的可用容量。不对称运行时,将引起系统电压的不对称,使电能质量变坏,对用户产生不良影响。对于异步电动机,一般情况下虽不致于破坏其正常工作,但也会引起出力减小,寿命降低。例如负序电压达 5%时,电动机出力将降低 1015%
6、,负序电压达 7%时,则出力降低达 2025%。当高压输电线一相断开时,较大的零序电流可能在沿输电线平行架设的通信线路中产生危险的对地电压,危及通讯设备和人员的安全,影响通信质量,当输电线与铁路平行时,也可能影响铁道自动闭锁装置的正常工作。因此,电力系统不对称运行对通信设备的电磁影响,应当进行计算,必要时应采取措施,减少干扰,或在通信设备中,采用保护装置。继电保护也必须认真考虑。在严重的情况下,如输电线非全相运行时,负序电流和零序电流可以在非全相运行的线路中流通,也可以在与之相连接的线路中流通,可能影响这些线路的继电保护的工作状态,甚至引起不正确动作。此外,在长时间非全相运行时,网络中还可能同
7、时发生短路(包括非全相运行的区内和区外),这时,很可能使系统的继电保护误动作。此外,电力系统在不对称和非全相运行情况下,零序电流长期通过大地,接地装置的电位升高,跨步电压与接触电压也升高,故接地装置应按不对称状态下保证对运行人员的安全来加以检验。不对称运行时,各相电流大小不等,使系统损耗增大,同时,系统潮流不能按经济分配,也将影响运行的经济性。试述电力系统谐波产生的原因及其影响?答:谐波产生的原因:高次谐波产生的根本原因是由于电力系统中某些设备和负荷的非线性特性,即所加的电压与产生的电流不成线性(正比)关系而造成的波形畸变。当电力系统向非线性设备及负荷供电时,这些设备或负荷在传递(如变压器)、
8、变换(如交直流换流器)、吸收(如电弧炉)系统发电机所供给的基波能量的同时,又把部分基波能量转换为谐波能量,向系统倒送大量的高次谐波,使电力系统的正弦波形畸变,电能质量降低。当前,电力系统的谐波源主要有三大类。 1)、铁磁饱和型:各种铁芯设备,如变压器、电抗器等,其铁磁饱和特性呈现非线性。 2)、电子开关型:主要为各种交直流换流装置(整流器、逆变器)以及双向晶闸管可控开关设备等,在化工、冶金、矿山、电气铁道等大量工矿企业以及家用电器中广泛使用,并正在蓬勃发展;在系统内部,如直流输电中的整流阀和逆变阀等。 3)、电弧型:各种冶炼电弧炉在熔化期间以及交流电弧焊机在焊接期间,其电弧的点燃和剧烈变动形成
9、的高度非线性,使电流不规则的波动。其非线性呈现电弧电压与电弧电流之间不规则的、随机变化的伏安特性。 对于电力系统三相供电来说,有三相平衡和三相不平衡的非线性特性。后者,如电气铁道、电弧炉以及由低压供电的单相家用电器等,而电气铁道是当前中压供电系统中典型的三相不平衡谐波源。谐波对电网的影响: 1、谐波对旋转设备和变压器的主要危害是引起附加损耗和发热增加,此外谐波还会引起旋转设备和变压器振动并发出噪声,长时间的振动会造成金属疲劳和机械损坏。 2、谐波对线路的主要危害是引起附加损耗。 3、谐波可引起系统的电感、电容发生谐振,使谐波放大。当谐波引起系统谐振时,谐波电压升高,谐波电流增大,引起继电保护及
10、自动装置误动,损坏系统设备(如电力电容器、电缆、电动机等),引发系统事故,威胁电力系统的安全运行。 4、谐波可干扰通信设备,增加电力系统的功率损耗(如线损),使无功补偿设备不能正常运行等,给系统和用户带来危害。限制电网谐波的主要措施有:增加换流装置的脉动数;加装交流滤波器、有源电力滤波器;加强谐波管理。什么是电力系统序参数?零序参数有何特点?与变压器接线组别、中性点接地方式、输电线架空地线、相邻平行线路有何关系? 答:对称的三相电路中,流过不同相序的电流时,所遇到的阻抗是不同的,然而同一相序的电压和电流间,仍符合欧姆定律。任一元件两端的相序电压与流过该元件的相应的相序电流之比,称为该元件的序参
11、数(阻抗)。负序电抗是由于发电机转子运动反向的旋转磁场所产生的电抗,对于静止元件(变压器、线路、电抗器、电容器等)不论旋转磁场是正向还是反向,其产生的电抗是没有区别的,所以它们的负序电抗等于正序电抗。但对于发电机,其正向与反向旋转磁场引起的电枢反应是不同的,反向旋转磁场是以两倍同步频率轮换切割转子纵轴与横轴磁路,因此发电机的负序电抗是一介于 X及 X的电抗值,远远小于正序电抗 Xd。零序参数(阻抗)与网络结构,特别是和变压器的接线方式及中性点接地方式有关。一般情况下,零序参数(阻抗)及零序网络结构与正、负序网络不一样。 对于变压器,零序电抗则与其结构(三个单相变压器组还是三柱变压器)、绕组的连
12、接(或 Y)和接地与否等有关。当三相变压器的一侧接成三角形或中性点不接地的星形时,从这一侧来看,变压器的零序电抗总是无穷大的。因为不管另一侧的接法如何,在这一侧加以零序电压时,总不能把零序电流送入变压器。所以只有当变压器的绕组接成星形,并且中性点接地时,从这星形侧来看变压器,零序电抗才是有限的(虽然有时还是很大的)。 对于输电线路,零序电抗与平行线路的回路数,有无架空地线及地线的导电性能等因素有关。零序电流在三相线路中是同相的,互感很大,因而零序电抗要比正序电抗大,而且零序电流将通过地及架空地线返回,架空地线对三相导线起屏蔽作用,使零序磁链减少,即使零序电抗减小。 平行架设的两回三相架空输电线
13、路中通过方向相同的零序电流时,不仅第一回路的任意两相对第三相的互感产生助磁作用,而且第二回路的所有三相对第一回路的第三相的互感也产生助磁作用,反过来也一样.这就使这种线路的零序阻抗进一步增大。各类稳定的具体含义是什么?答: (1).电力系统的静态稳定是指电力系统受到小干扰后不发生非周期性失步,自动恢复到起始运行状态。(2).电力系统的暂态稳定是指系统在某种运行方式下突然受到大的扰动后,经过一个机电暂态过程达到新的稳定运行状态或回到原来的稳定状态。(3).电力系统的动态稳定是指电力系统受到干扰后不发生振幅不断增大的振荡而失步。主要有:电力系统的低频振荡、机电耦合的次同步振荡、同步电机的自激等。(
14、4).电力系统的电压稳定是指电力系统维持负荷电压于某一规定的运行极限之内的能力。它与电力系统中的电源配置、网络结构及运行方式、负荷特性等因素有关。当发生电压不稳定时,将导致电压崩溃,造成大面积停电。(5).频率稳定是指电力系统维持系统频率与某一规定的运行极限内的能力。当频率低于某一临界频率,电源与负荷的平衡将遭到彻底破坏,一些机组相继退出运行,造成大面积停电,也就是频率崩溃。保证和提高电力系统静态稳定的措施有哪些?答:电力系统的静态稳定性是电力系统正常运行时的稳定性,电力系统静态稳定性的基本性质说明,静态储备越大则静态稳定性越高。提高静态稳定性的措施很多,但是根本性措施是缩短电气距离。主要措施
15、有: (1)、减少系统各元件的电抗:减小发电机和变压器的电抗,减少线路电抗(采用分裂导线); (2)、提高系统电压水平; (3)、改善电力系统的结构; (4)、采用串联电容器补偿; (5)、采用自动调节装置; (6)、采用直流输电。在电力系统正常运行中,维持和控制母线电压是调度部门保证电力系统稳定运行的主要和日常工作。维持、控制变电站、发电厂高压母线电压恒定,特别是枢纽厂(站)高压母线电压恒定,相当于输电系统等值分割为若干段,这样每段电气距离将远小于整个输电系统的电气距离,从而保证和提高了电力系统的稳定性。提高电力系统的暂态稳定性的措施有哪些?答:提高静态稳定性的措施也可以提高暂态稳定性,不过
16、提高暂态稳定性的措施比提高静态稳定性的措施更多。提高暂态稳定性的措施可分成三大类:一是缩短电气距离,使系统在电气结构上更加紧密;二是减小机械与电磁、负荷与电源的功率或能量的差额并使之达到新的平衡;三是稳定破坏时,为了限制事故进一步扩大而必须采取的措施,如系统解列。提高暂态稳定的具体措施有: (1)、继电保护实现快速切除故障; (2)、线路采用自动重合闸; (3)、采用快速励磁系统; (4)、发电机增加强励倍数; (5)、汽轮机快速关闭汽门; (6)、发电机电气制动; (7)、变压器中性点经小电阻接地; (8)、长线路中间设置开关站; (9)、线路采用强行串联电容器补偿;(10)、采用发电机线路
17、单元结线方式; (11)、实现连锁切机; (12)、采用静止无功补偿装置;(13)、系统设置解列点; (14)、系统稳定破坏后,必要且条件许可时,可以让发电机短期异步运行,尽快投入系统备用电源,然后增加励磁,实现机组再同步。引起电力系统异步振荡的主要原因是什么?系统振荡时一般现象是什么?答:引起系统异步振荡的主要原因为: 1)输电线路输送功率超过极限值造成静态稳定破坏; 2)电网发生短路故障,切除大容量的发电、输电或变电设备,负荷瞬间发生较大突变等造成电力系统暂态稳定破坏; 3)环状系统(或并列双回线)突然开环,使两部分系统联系阻抗突然增大,引启动稳定破坏而失去同步; 4)大容量机组跳闸或失磁
18、,使系统联络线负荷增大或使系统电压严重下降,造成联络线稳定极限降低,易引起稳定破坏; 5)电源间非同步合闸未能拖入同步。系统振荡时一般现象: 1)发电机,变压器,线路的电压表,电流表及功率表周期性的剧烈摆动,发电机和变压器发出有节奏的轰鸣声。 2)连接失去同步的发电机或系统的联络线上的电流表和功率表摆动得最大。电压振荡最激烈的地方是系统振荡中心,每一周期约降低至零值一次。随着离振荡中心距离的增加,电压波动逐渐减少。如果联络线的阻抗较大,两侧电厂的电容也很大,则线路两端的电压振荡是较小的。 3)失去同期的电网,虽有电气联系,但仍有频率差出现,送端频率高,受端频率低并略有摆动。低频率运行会给电力系
19、统带来哪些危害?答:电力系统低频运行是非常危险的,因为电源与负荷在低频率下重新平衡很不牢固,也就是说稳定性很差,甚至产生频率崩溃,会严重威胁电网的安全运行,并对发电设备和用户造成严重损坏,主要表现为以下几方面:1)引起汽轮机叶片断裂。在运行中,汽轮机叶片由于受不均匀汽流冲击而发生振动。在正常频率运行情况下,汽轮机叶片不发生共振。当低频率运行时,末级叶片可能发生共振或接近于共振,从而使叶片振动应力大大增加,如时间过长,叶片可能损伤甚至断裂。2)使发电机出力降低,频率降低,转速下降,发电机两端的风扇鼓进的风量减小,冷却条件变坏,如果仍维持出力不变,则发电机的温度升高,可能超过绝缘材料的温度允许值,
20、为了使温升不超过允许值,势必要降低发电机出力。3)使发电机机端电压下降。因为频率下降时,会引起机内电势下降而导致电压降低,同时,由于频率降低,使发电机转速降低,同轴励磁电流减小,使发电机的机端电压进一步下降。4)对厂用电安全运行的影响。当低频运行时,所有厂用交流电动机的转速都相应的下降,因而火电厂的给水泵、风机、磨煤机等辅助设备的出力也将下降,从而影响电厂的出力。其中影响最大的是高压给水泵和磨煤机,由于出力的下降,使电网有功电源更加缺乏,致使频率进一步下降,造成恶性循环。5)对用户的危害:频率下降,将使用户的电动机转速下降,出力降低,从而影响用户产品的质量和产量。另外,频率下降,将引起电钟不准
21、,电气测量仪器误差增大,安全自动装置及继电保护误动作等。在电力系统中电抗器的作用有那些?答:电力系统中所采取的电抗器,常见的有串联电抗器和并联电抗器。串联电抗器主要用来限制短路电流,也有在滤波器中与电容器串联或并联用来限制电网中的高次谐波。 并联电抗器用来吸收电网中的容性无功,如500kV电网中的高压电抗器,500kV变电站中的低压电抗器,都是用来吸收线路充电电容无功的;220kV、110kV、35 kV、10kV 电网中的电抗器是用来吸收电缆线路的充电容性无功的。可以通过调整并联电抗器的数量来调整运行电压。超高压并联电抗器有改善电力系统无功功率有关运行状况的多种功能,主要包括: 1)轻空载或
22、轻负荷线路上的电容效应,以降低工频暂态过电压。 2)改善长输电线路上的电压分布。 3)使轻负荷时线路中的无功功率尽可能就地平衡,防止无功功率不合理流动,同时也减轻了线路上的功率损失。 4)在大机组与系统并列时,降低高压母线上工频稳态电压,便于发电机同期并列。5)防止发电机带长线路可能出现的自励磁谐振现象。 6)当采用电抗器中性点经小电抗接地装置时,还可用小电抗器补偿线路相间及相地电容,以加速潜供电流自动熄灭,便于采用单相快速重合闸。什么叫谐振过电压?分几种类型?如何防范?答:电力系统中一些电感、电容元件在系统进行操作或发生故障时可形成各种振荡回路,在一定的能源作用下,会产生串联谐振现象,导致系
23、统某些元件出现严重的过电压。谐振过电压分为以下几种:(1)线性谐振过电压谐振回路由不带铁芯的电感元件(如输电线路的电感,变压器的漏感)或励磁特性接近线性的带铁芯的电感元件(如消弧线圈)和系统中的电容元件所组成。 (2)铁磁谐振过电压谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。因铁芯电感元件的饱和现象,使回路的电感参数是非线性的,这种含有非线性电感元件的回路在满足一定的谐振条件时,会产生铁磁谐振。 (3)参数谐振过电压由电感参数作周期性变化的电感元件(如凸极发电机的同步电抗在 Xd Xq 间周期变化)和系统电容元件(如空载线路)组成回路,当参数配合时,通过电感的周
24、期性变化,不断向谐振系统输送能量,造成参数谐振过电压。限制谐振过电压的主要措施有: (1)提高开关动作的同期性由于许多谐振过电压是在非全相运行条件下引起的,因此提高开关动作的同期性,防止非全相运行,可以有效防止谐振过电压的发生。 (2)在并联高压电抗器中性点加装小电抗用这个措施可以阻断非全相运行时工频电压传递及串联谐振。 (3)破坏发电机产生自励磁的条件,防止参数谐振过电压。什么叫标幺值和有名值?采用标幺值进行电力系统计算有什么优点?采用标幺值计算时基值体系如何选取?答:有名值是电力系统各物理量及参数的带量纲的数值。标幺值是各物理量及参数的相对值,是不带量纲的数值。标幺值是相对某一基值而言的,
25、同一有名值,当基值选取不一样时,其标幺值也不一样,它们的关系如下:标么值有名值/基值。电力系统由许多发电机、变压器、线路、负荷等元件组成,它们分别接入不同电压等级的网络中,当用有名值进行潮流及短路计算时,各元件接入点的物理量及参数必须折算成计算点的有名值进行计算,很不方便,也不便于对计算结果进行分析。采用标幺值进行计算时,则不论各元件及计算点位于哪一电压等级的网络中,均可将它们的物理量与参数标幺值直接用来计算。计算结果也可直接进行分析。当某些变压器的变比不是标准值时,只须对变压器等值电路参数进行修正,不影响计算结果按基值体系的基值电压传递到各电压等级进行有名值的换算。基值体系中只有两个独立的基
26、值量,一个为基值功率,一般取容易记忆及换算的数值,如取 100MW、1000MW 等,或取该计算网络中某一些发电元件的额定功率。另一个为基值电压,取各级电压的标称值。标称值可以是额定值的1.0、1.05或1.10倍。如取500/330/220/110kV或525/346.5/231/115.5kV或550/363/242/121kV,其它基值量(电流、阻抗等)可由以上两个基值量算出。潮流计算的目的是什么?常用的计算方法有几种?快速分解法的特点及适用条件是什么?答:潮流计算有以下几个目的: (1)在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平
27、年的大、小方式下潮流交换控制、调峰、调相、调压的要求。 (2)在编制年运行方式时,在预计负荷增长及新设备投运基础上,选择典型方式进行潮流计算,发现电网中薄弱环节,供调度员日常调度控制参考,并对规划、基建部门提出改进网架结构,加快基建进度的建议。 (3)正常检修及特殊运行方式下的潮流计算,用于日运行方式的编制,指导发电厂开机方式,有功、无功调整方案及负荷调整方案,满足线路、变压器热稳定要求及电压质量要求。 (4)预想事故、设备退出运行对静态安全的影响分析及作出预想的运行方式调整方案。常用的潮流计算方法有:牛顿-拉夫逊法及快速分解法。快速分解法有两个主要特点: (1)降阶在潮流计算的修正方程中利用
28、了有功功率主要与节点电压相位有关,无功功率主要与节点电压幅值有关的特点,实现 P-Q 分解,使系数矩阵由原来的 2N2N阶降为 NN 阶,N 为系统的节点数(不包括缓冲节点)。 (2)因子表固定化利用了线路两端电压相位差不大的假定,使修正方程系数矩阵元素变为常数,并且就是节点导纳的虚部。由于以上两个特点,使快速分解法每一次迭代的计算量比牛顿法大大减少。快速分解法只具有一次收敛性,因此要求的迭代次数比牛顿法多,但总体上快速分解法的计算速度仍比牛顿法快。快速分解法只适用于高压网的潮流计算,对中、低压网,因线路电阻与电抗的比值大,线路两端电压相位差不大的假定已不成立,用快速分解法计算,会出现不收敛问
29、题。电力系统中,短路计算的作用是什么?常用的计算方法是什么?答:短路计算的作用是:(1)校验电气设备的机械稳定性和热稳定性;(2)校验开关的遮断容量;(3)确定继电保护及安全自动装置的定值;(4)为系统设计及选择电气主接线提供依据;(5)进行故障分析;(6)确定输电线路对相邻通信线的电磁干扰。常用的计算方法是阻抗矩阵法,并利用迭加原理,令短路后网络状态=短路前网络状态+故障分量状态,在短路点加一与故障前该节点电压大小相等、方向相反的电势,再利用阻抗矩阵即可求得各节点故障分量的电压值,加上该节点故障前电压即得到短路故障后的节点电压值。继而,可求得短路故障通过各支路的电流。具体说明电力系统对继电保
30、护的基本要求是什么?答:继电保护装置应满足可靠性、选择性、灵敏性和速动性的要求。这四性之间紧密联系,既矛盾又统一。(1)可靠性是指保护该动作时应可靠动作,不该动作时应可靠不动作。可靠性是对继电保护装置性能的最根本的要求。(2)选择性是指首先由故障设备或线路本身的保护切除故障,当故障设备或线路本身的保护或断路器拒动时,才允许由相邻设备保护、线路保护或断路器失灵保护切除故障。为保证对相邻设备和线路有配合要求的保护和同一保护内有配合要求的两元件(如启动与跳闸元件或闭锁与动作元件)的选择性,其灵敏系数及动作时间,在一般情况下应相互配合。(3)灵敏性是指在设备或线路的被保护范围内发生金属性短路时,保护装
31、置应具有必要的灵敏系数,各类保护的最小灵敏系数在规程中有具体规定。选择性和灵敏性的要求,通过继电保护的整定实现。(4)速动性是指保护装置应尽快地切除短路故障,其目的是提高系统稳定性,减轻故障设备和线路的损坏程度,缩小故障波及范围,提高自动重合闸和备用电源或备用设备自动投入的效果等。一般从装设速动保护(如高频保护、差动保护)、充分发挥零序接地瞬时段保护及相间速断保护的作用、减少继电器固有动作时间和开关跳闸时间等方面入手来提高速动性。试简述 220 千伏及以上电网继电保护整定计算的基本原则和规定答:(1)对于 220 千伏及以上电压电网的线路继电保护一般都采用近后备原则。当故障元件的一套继电保护装
32、置拒动时,由相互独立的另一套继电保护装置动作切除故障,而当断路器拒绝动作时,启动断路器失灵保护,断开与故障元件相连的所有其它联接电源的断路器。 (2)对瞬时动作的保护或保护的瞬时段,其整定值应保证在被保护元件外部故障时,可靠不动作,但单元或线路变压器组(包括一条线路带两台终端变压器)的情况除外。 (3)上、下级继电保护的整定,一般应遵循逐级配合的原则,满足选择性的要求。即在下一级元件故障时,故障元件的继电保护必须在灵敏度和动作时间上均能同时与上一级元件的继电保护取得配合,以保证电网发生故障时有选择性地切除故障。 (4)继电保护整定计算应按正常运行方式为依据。所谓正常运行方式是指常见的运行方式和
33、被保护设备相邻近的一回线或一个元件检修的正常检修运行方式。对特殊运行方式,可以按专用的运行规程或者依据当时实际情况临时处理。 (5)变压器中性点接地运行方式的安排,应尽量保持变电所零序阻抗基本不变。遇到因变压器检修等原因,使变电所的零序阻抗有较大变化的特殊运行方式时,根据当时实际情况临时处理。(6)故障类型的选择以单一设备的常见故障为依据,一般以简单故障进行保护装置的整定计算。 (7)灵敏度按正常运行方式下的不利故障类型进行校验,保护在对侧断路器跳闸前和跳闸后均能满足规定的灵敏度要求。对于纵联保护,在被保护线路末端发生金属性故障时,应有足够的灵敏度(灵敏度应大于 2)。系统中变压器中性点接地方
34、式的安排一般如何考虑?答:变压器中性点接地方式的安排应尽量保持变电所的零序阻抗基本不变。遇到因变压器检修等原因使变电所的零序阻抗有较大变化的特殊运行方式时,应根据规程规定或实际情况临时处理。1)变电所只有一台变压器,则中性点应直接接地,计算正常保护定值时,可只考虑变压器中性点接地的正常运行方式。当变压器检修时,可作特殊运行方式处理,例如改定值或按规定停用、起用有关保护段。2)变电所有两台及以上变压器时,应只将一台变压器中性点直接接地运行,当该变压器停运时,将另一台中性点不接地变压器改为直接接地。如果由于某些原因,变电所正常必须有两台变压器中性点直接接地运行,当其中一台中性点直接接地的变压器停运
35、时,若有第三台变压器则将第三台变压器改为中性点直接接地运行。否则,按特殊运行方式处理。3)双母线运行的变电所有三台及以上变压器时,应按两台变压器中性点直接接地方式运行,并把它们分别接于不同的母线上,当其中一台中性点直接接地变压器停运时,将另一台中性点不接地变压器直接接地。若不能保持不同母线上各有一个接地点时,作为特殊运行方式处理。4)为了改善保护配合关系,当某一短线路检修停运时,可以用增加中性点接地变压器台数的办法来抵消线路停运对零序电流分配关系产生的影响。5)自耦变压器和绝缘有要求的变压器中性点必须直接接地运行。什么是线路纵联保护?其特点是什么?答:线路纵联保护是当线路发生故障时,使两侧开关
36、同时快速跳闸的一种保护装置,是线路的主保护。它以线路两侧判别量的特定关系作为判据。即两侧均将判别量借助通道传送到对侧,然后,两侧分别按照对侧与本侧判别量之间的关系来判别区内故障或区外故障。因此,判别量和通道是纵联保护装置的主要组成部分。 1、方向高频保护是比较线路两端各自看到的故障方向,以判断是线路内部故障还是外部故障。如果以被保护线路内部故障时看到的故障方向为正方向,则当被保护线路外部故障时,总有一侧看到的是反方向。其特点是: 1)要求正向判别启动元件对于线路末端故障有足够的灵敏度; 2)必须采用双频制收发信机。 2、相差高频保护是比较被保护线路两侧工频电流相位的高频保护。当两侧故障电流相位
37、相同时保护被闭锁,两侧电流相位相反时保护动作跳闸。其特点是: 1)能反应全相状态下的各种对称和不对称故障,装置比较简单; 2)不反应系统振荡。在非全相运行状态下和单相重合闸过程中保护能继续运行; 3)不受电压回路断线的影响; 4)对收发信机及通道要求较高,在运行中两侧保护需要联调; 5)当通道或收发信机停用时,整个保护要退出运行,因此需要配备单独的后备保护。 3、高频闭锁距离保护是以线路上装有方向性的距离保护装置作为基本保护,增加相应的发信与收信设备,通过通道构成纵联距离保护。其特点是: 1)能足够灵敏和快速地反应各种对称与不对称故障; 2)仍保持后备保护的功能; 3)电压二次回路断线时保护将
38、会误动,需采取断线闭锁措施,使保护退出运行。相差高频保护有何优缺点?答:优点: 1、能反应全相状态下的各种对称和不对称故障,装置比较简单。2、不反应系统振荡。在非全相运行状态下和单相重合闸过程中,保护能继续运行。3、保护的工作情况与是否有串补电容及其保护间隙是否不对称击穿基本无关。4、不受电压二次回路断线的影响。缺点如下: 1、重负荷线路,负荷电流改变了线路两端电流的相位,对内部故障保护动作不利。2、当一相断线接地或非全相运行过程中发生区内故障时,灵敏度变坏,甚至可能拒动。3、对通道要求较高,占用频带较宽。在运行中,线路两端保护需联调。4、线路分布电容严重影响线路两端电流的相位。线路长度过长限
39、制了其使用。高频闭锁负序方向保护有何优缺点?答:该保护具有下列优点: 1、原理比较简单。在全相运行条件下能正确反应各种不对称短路。在三相短路时,只要不对称时间大于57ms,保护可以动作。 2、不反应系统振荡,但也不反应稳定的三相短路。 3、当负序电压和电流为启动值的三倍时,保护动作时间为 1015ms。4、负序方向元件一般有较满意的灵敏度。 5、对高频收发信机要求较低。缺点如下: 1、在两相运行条件下(包括单相重合闸过程中)发生故障,保护可能拒动。 2、线路分布电容的存在,使线路在空载合闸时,由于三相不同时合闸,保护可能误动。当分布电容足够大时,外部短路时该保护也将误动,应采取补偿措施。 3、在串补线路上,只要串补电容无不对称击穿,则全相运行条件下的短路保护能正确动作。当串补电容在保护区内时,发生系统振荡或外部三相短路、且电容器保护间隙不对称击穿,保护将误动。当串补电容位于保护区外,区内短路且有电容器的不对称击穿,也可能发生保护拒动。 4、电压二次回路断线时,保护应退出运行。
链接地址:https://www.31ppt.com/p-4124679.html