新人教版八年级数学上册(全册)-同步练习汇总.doc
《新人教版八年级数学上册(全册)-同步练习汇总.doc》由会员分享,可在线阅读,更多相关《新人教版八年级数学上册(全册)-同步练习汇总.doc(112页珍藏版)》请在三一办公上搜索。
1、超级资源(共25套113页)新人教版八年级数学上册(全册) 同步练习汇总第十一章 三角形11.1与三角形有关的线段专题一 三角形个数的确定1如图,图中三角形的个数为()A2 B18 C19 D202如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形_个3阅读材料,并填表:在ABC中,有一点P1,当P1、A、B、C没有任何三点在同一直线上时,可构成三个不重叠的小三角形(如图)当ABC内的点的个数增加时,若其他条件不变,三角形内互不重叠的小三角形的个数情况怎样?完成下表:ABC内点的个数1231007构成不重叠的小三角形的个数35
2、专题二 根据三角形的三边不等关系确定未知字母的范围4三角形的三边分别为3,12a,8,则a的取值范围是() A6a3 B5a2 C2a5 Da5或a25. 在ABC中,三边长分别为正整数a、b、c,且cba0,如果b=4,则这样的三角形共有_个6若三角形的三边长分别是2、x、8,且x是不等式的正整数解,试求第三边x的长状元笔记【知识要点】1三角形的三边关系 三角形两边的和大于第三边,两边的差小于第三边2三角形三条重要线段 (1)高:从三角形的顶点向对边所在的直线作垂线,顶点与垂足之间的线段叫做三角形的高 (2)中线:连接三角形的顶点与对边中点的线段叫做三角形的中线 (3)角平分线:三角形内角的
3、平分线与对边相交,顶点与交点之间的线段叫做三角形的角平分线3三角形的稳定性 三角形具有稳定性【温馨提示】1以“是否有边相等”,可以将三角形分为两类:三边都不相等的三角形和等腰三角形而不是分为三类:三边都不相等的三角形、等腰三角形、等边三角形,等边三角形是等腰三角形的一种2三角形的高、中线、角平分线都是线段,而不是直线或射线【方法技巧】1根据三角形的三边关系判定三条线段能否组成三角形时,要看两条较短边之和是否大于最长边2三角形的中线将三角形分成两个同底等高的三角形,这两个三角形面积相等参考答案:1D 解析:线段AB上有5个点,线段AB与点C组成5(51)2=10个三角形;同样,线段DE上也有5个
4、点,线段DE与点C组成5(51)2=10个三角形,图中三角形的个数为20个故选D221 解析:根据前边的具体数据,再结合图形,不难发现:后边的总比前边多4,若把第一个图形中三角形的个数看作是1=43,则第n个图形中,三角形的个数是4n3所以当n=6时,原式=213解:填表如下:ABC内点的个数1231007构成不重叠的小三角形的个数3572015解析:当ABC内有1个点时,构成不重叠的三角形的个数是3=121;当ABC内有2个点时,构成不重叠的三角形的个数是5=221;参考上面数据可知,三角形的个数与点的个数之间的关系是:三角形内有n个点时,三角形内互不重叠的小三角形的个数是2n+1,故当有3
5、个点时,三角形的个数是321=7;当有1007个点时,三角形的个数是100721=20154B 解析:根据题意,得8312a83,即512a11,解得5a2故选B510 解析:在ABC中,三边长分别为正整数a、b、c,且cba0,ca+bb=4,a=1,2,3,4a=1时,c=4;a=2时,c=4或5;a=3时,c=4,5,6;a=4时,c=4,5,6,7这样的三角形共有1+2+3+4=10个6解:原不等式可化为3(x+2)2(12x),解得x8x是它的正整数解,x可取1,2,3,5,6,7再根据三角形三边关系,得6x10,x=711.2与三角形有关的角专题一 利用三角形的内角和求角度1如图,
6、在ABC中,ABC的平分线与ACB的外角平分线相交于D点,A=50,则D=()A15 B20 C25 D302如图,已知:在直角ABC中,C=90,BD平分ABC且交AC于D. 若AP平分BAC且交BD于P,求BPA的度数3已知:如图1,线段AB、CD相交于点O,连接AD、CB,如图2,在图1的条件下,DAB和BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N试解答下列问题:(1)在图1中,请直接写出A、B、C、D之间的数量关系:_;(2)在图2中,若D=40,B=30,试求P的度数;(写出解答过程)(3)如果图2中D和B为任意角,其他条件不变,试写出P与D、B之间的数量关系
7、(直接写出结论即可)专题二 利用三角形外角的性质解决问题4如图,ABD,ACD的角平分线交于点P,若A=50,D=10,则P的度数为()A15B20 C25 D305如图,ABC中,CD是ACB的角平分线,CE是AB边上的高,若A=40,B=72(1)求DCE的度数;(2)试写出DCE与A、B的之间的关系式(不必证明)6如图:(1)求证:BDC=A+B+C;(2)如果点D与点A分别在线段BC的两侧,猜想BDC、A、ABD、ACD这4个角之间有怎样的关系,并证明你的结论状元笔记【知识要点】1三角形内角和定理三角形三个内角的和等于1802直角三角形的性质及判定 性质:直角三角形的两个锐角互余 判定
8、:有两个角互余的三角形是直角三角形3三角形的外角及性质外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角性质:三角形的外角等于与它不相邻的两个内角的和【温馨提示】1三角形的外角是一边与另一边的延长线组成的角,而不是两边延长线组成的角2三角形的外角的性质中的内角一定是与外角不相邻的内角【方法技巧】1在直角三角形中已知一个锐角求另一个锐角时,可直接使用“直角三角形的两个锐角互余”2由三角形的外角的性质可得出:三角形的外角大于任何一个与它不相邻的内角参考答案:1C 解析:ABC的平分线与ACB的外角平分线相交于点D,1=ACE,2=ABC又D=12,A=ACEABC,D=A=25故选C2解
9、:(法1) 因为C=90,所以BACABC=90, 所以(BACABC)=45. 因为BD平分ABC,AP平分BAC , BAP=BAC,ABP=ABC , 即BAPABP=45, 所以APB=18045=135. (法2)因为C=90,所以BACABC=90, 所以(BACABC)=45, 因为BD平分ABC,AP平分BAC,DBC=ABC,PAC=BAC , 所以DBCPAD=45. 所以APB=PDAPAD =DBCCPAD=DBCPADC =4590=135. 3解:(1)A+D=B+C;(2)由(1)得,1+D=3+P,2+P=4+B,13=PD,24=BP,又AP、CP分别平分DA
10、B和BCD,1=2,3=4,PD=BP,即2P=B+D,P=(40+30)2=35(3)2P=B+D4B 解析:延长DC,与AB交于点E根据三角形的外角等于不相邻的两内角和,可得ACD=50+AEC=50+ABD+10,整理得ACDABD=60设AC与BP相交于点O,则AOB=POC,P+ACD=A+ABD,即P=50(ACDABD)=20故选B5解:(1)A=40,B=72,ACB=68CD平分ACB,DCB=ACB=34CE是AB边上的高,ECB=90B=9072=18DCE=3418=16(2)DCE=(BA)6(1)证明:延长BD交AC于点E,BEC是ABE的外角,BEC=A+BBDC
11、是CED的外角,BDC=C+DEC=C+A+B(2)猜想:BDC+ACD+A+ABD=360证明:BDC+ACD+A+ABD=3+2+6+5+4+1=(3+2+1)+(6+5+4)=180+180=36011.3多边形及其内角和专题一 根据正多边形的内角或外角求值1若一个正多边形的每个内角为150,则这个正多边形的边数是() A12 B11 C10 D92一个多边形的每一个外角都等于36,则该多边形的内角和等于_3已知一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数专题二 求多个角的和4如图为某公司的产品标志图案,图中A+B+C+D+E+F+G=()A36
12、0 B540 C630 D7205如图,A+ABC+C+D+E+F=_6如图,求:A+B+C+D+E+F的度数状元笔记【知识要点】1多边形及相关概念 多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线2多边形的内角和与外角和 内角和:n边形的内角和等于(n2)180 外角和:多边形的外角和等于360【温馨提示】1从n边形的一个顶点出发,可以做(n3)条对角线,它们将n边形分为(n2)个三角形对角线的条数与分成的三角形的个数不要弄错2多边形的外角和等于360,而不是180【方法技巧】1连接多边形的对角线,将多边形转化
13、为多个三角形,将多边形问题转化为三角形问题来解决2多边形的内角和随边数的变化而变化,但外角和不变,都等于360,可利用多边形的外角和不变求多边形的边数等参考答案:1A 解析:每个内角为150,每个外角等于30多边形的外角和是360,36030=12,这个正多边形的边数为12故选A21440 解析:多边形的边数为36036=10,多边形的内角为18036=144,多边形的内角和等于14410=14403解:设多边形的边数为n,根据题意,得(n2)180=9360,解得n=20所以这个多边形的边数为204B 解析:1=C+D,2=E+F,A+B+C+D+E+F+G=A+B+1+2+G=540故选B
14、5360 解析:在四边形BEFG中,EBG=C+D,BGF=A+ABC,A+ABC+C+D+E+F=EBG+BGF+E+F=3606解:POA是OEF的外角,POA=E+F同理:BPO=D+CA+B+BPO+POA=360,A+B+C+D+E+F=360第十二章 全等三角形12.1全等三角形12.2三角形全等的判定专题一 三角形全等的判定1如图,BD是平行四边形ABCD的对角线,ABD的平分线BE交AD于点E,CDB的平分线DF交BC于点F求证:ABECDF2如图,在ABC中,D是BC边上的点(不与B,C重合),F,E分别是AD及其延长线上的点,CFBE. 请你添加一个条件,使BDECDF (
15、不再添加其他线段,不再标注或使用其他字母),并给出证明(1)你添加的条件是:_;(2)证明: 3如图,ABC中,点D在BC上,点E在AB上,BD=BE,要使ADBCEB,还需添加一个条件(1)给出下列四个条件:AD=CE;AE=CD;BAC=BCA;ADB=CEB;请你从中选出一个能使ADBCEB的条件,并给出证明;(2)在(1)中所给出的条件中,能使ADBCEB的还有哪些?直接在题后横线上写出满足题意的条件序号_专题二 全等三角形的判定与性质4如图,已知ABC中,ABC=45,AC=4,H是高AD和BE的交点,则线段BH的长度为()AB4 CD55【2013襄阳】如图,在ABC中,ABAC,
16、ADBC于点D,将ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.求证:AMAN.6【2012泸州】如图,ABC是等边三角形,D是AB边上一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE求证:AEBC专题三 全等三角形在实际生活中的应用7如图,有两个长度相同的滑梯靠在一面墙上已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角ABC与DFE的度数和是()A60 B90 C120 D1508有一座小山,现要在小山A、B的两端开一条隧道,施工队要知道A、B两端的距离,于是
17、先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B两端的距离,你能说说其中的道理吗?9已知如图,要测量水池的宽AB,可过点A作直线ACAB,再由点C观测,在BA延长线上找一点B,使ACB=ACB,这时只要量出AB的长,就知道AB的长,对吗?为什么?状元笔记【知识要点】1全等三角形 能够完全重合的两个三角形叫做全等三角形2全等三角形的性质 全等三角形的对应边相等,全等三角形的对应角相等3三角形全等的判定方法 (1)三边分别相等的两个三角形全等(简写成“边边边”或“SSS”) (2)两边和它们的夹角分
18、别相等的两个三角形全等(简写成“边角边”或“SAS”) (3)两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”) (4)两个角和其中一个角的对边分别相等的两个三角形全等(简写成“角角边”或“AAS”)4直角三角形全等的判定方法 斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”)【温馨提示】1两个三角形全等的条件中必须有一条边分别相等,只有角分别相等不能证明两个三角形全等2有两边和其中一边的对角分别相等的两个三角形不一定全等3“HL”定理指的是斜边和一条直角边分别相等,而不是斜边和直角分别相等【方法技巧】1应用全等三角形性质解决问题的前提是准确
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 八年 级数 上册 同步 练习 汇总
链接地址:https://www.31ppt.com/p-4115031.html