中考数学专题复习--与轴对称相关的线段之和最短问题-有答案.doc
《中考数学专题复习--与轴对称相关的线段之和最短问题-有答案.doc》由会员分享,可在线阅读,更多相关《中考数学专题复习--与轴对称相关的线段之和最短问题-有答案.doc(10页珍藏版)》请在三一办公上搜索。
1、与轴对称相关的线段之和最短问题我们经常在考试当中看到求线段之和最小的问题,每当我们看到这样的题型,同学们从今往后就要高兴了,因为我把它们出现的模型整理如下。首先来看下这几个数学模型:模型1:两点之间线段最短。要在l找点P,使得PA+PB最短,这模型最简单,两点之间线段最短。模型2:将军饮马问题。在l上找一点P,使得PA+PB最短,作对称。其中BA就是最短的值模型3:两动点找三角形周长最小在OA,OB上找点M、N,使得PMN周长最小,把P关于OA,OB分别作对称,然后连接两个对称点,交点记为所求,然后周长最小值为PP,模型4:两动点加垂线段最短,在OA上找一点M,使得M到OB的距离与M到P的距离
2、之和最短。作P关于OA的对称点,然后在对称点P上作OB的垂线,交点即为所求,PN就是最短值。模型4:如图,点P,Q为MON内的两点,分别在OM,ON上作点A,B。使四边形PAQB的周长最小。总结一句话,要在哪找点,我们就关于谁作对称!是不是很好理解?好吧!我们看看下面这些例题该怎样套上我们的模型!题型1:直线类例题1如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC10千米,BD30千米,且CD30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?作点B关于直线CD的对称点B,连
3、接AB,交CD于点M则AM+BM = AM+BM = AB,水厂建在M点时,费用最小如右图,在直角ABE中,AE = AC+CE = 10+30 = 40EB = 30所以:AB = 50总费用为:503 = 150万例题2求代数式(0x4)的最小值如右图,AE的长就是这个代数式的最小值在直角AEF中AF = 3 EF = 4则AE = 5所以,这个代数式的最小值是5题型2:角类例题3如图AOB = 45,P是AOB内一点,PO = 10,Q、P分别是OA、OB上的动点,求PQR周长的最小值分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA、OB于点Q,R,连接OP1,OP2,则
4、OP = OP1 = OP2 = 10且P1OP2 = 90由勾股定理得P1P2 = 10题型3:三角形类例题4如图,等腰RtABC的直角边长为2,E是斜边AB的中点,P是AC边上的一动点,则PB+PE的最小值为 即在AC上作一点P,使PB+PE最小作点B关于AC的对称点B,连接BE,交AC于点P,则BE = PB+PE = PB+PEBE的长就是PB+PE的最小值在直角BEF中,EF = 1,BF = 3根据勾股定理,BE = 例题5如图,在ABC中,ACBC2,ACB90,D是BC边的中点,E是AB边上一动点,则ECED的最小值为_。即是在直线AB上作一点E,使EC+ED最小作点C关于直线
5、AB的对称点C,连接DC交AB于点E,则线段DC的长就是EC+ED的最小值。在直角DBC中DB=1,BC=2,根据勾股定理可得,DC=例题6如图,在等边ABC中,AB = 6,ADBC,E是AC上的一点,M是AD上的一点,且AE = 2,求EM+EC的最小值因为点C关于直线AD的对称点是点B,所以连接BE,交AD于点M,则ME+MD最小,过点B作BHAC于点H,则EH = AH AE = 3 2 = 1,BH = = = 3在直角BHE中,BE = = = 2题型4:正方形类例题7如图所示,正方形ABCD的面积为12,ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PDP
6、E的和最小,则这个最小值为()A2B2C3D即在AC上求一点P,使PE+PD的值最小点D关于直线AC的对称点是点B,连接BE交AC于点P,则BE = PB+PE = PD+PE,BE的长就是PD+PE的最小值BE = AB = 2例题8在边长为2的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则PBQ周长的最小值为_(结果不取近似值).即在AC上求一点P,使PB+PQ的值最小因为点B关于AC的对称点是D点,所以连接DQ,与AC的交点P就是满足条件的点DQ = PD+PQ = PB+PQ故DQ的长就是PB+PQ的最小值在直角CDQ中,CQ = 1 ,CD = 2
7、根据勾股定理,得,DQ = 题型5:矩形类例题9如图,若四边形ABCD是矩形, AB = 10cm,BC = 20cm,E为边BC上的一个动点,P为BD上的一个动点,求PC+PD的最小值;作点C关于BD的对称点C,过点C,作CBBC,交BD于点P,则CE就是PE+PC的最小值直角BCD中,CH = Error! Reference source not found.直角BCH中,BH = 8BCC的面积为:BHCH = 160所以 CEBC = 2160 则CE = 16题型6:菱形类例题10如图,若四边形ABCD是菱形, AB=10cm,ABC=45,E为边BC上的一个动点,P为BD上的一个
8、动点,求PC+PE的最小值;点C关于BD的对称点是点A,过点A作AEBC,交BD于点P,则AE就是PE+PC的最小值在等腰EAB中,求得AE的长为5题型7:直角梯形类例题11已知直角梯形ABCD中,ADBC,ABBC,AD=2,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,APD中边AP上的高为( )A、 B、 C、 D、3作点A关于BC的对称点A,连接AD,交BC于点P则AD = PA+PD = PA+PDAD的长就是PA+PD的最小值SAPD = 4在直角ABP中,AB = 4,BP = 1根据勾股定理,得AP =所以AP上的高为:2= 题型8:圆类例题12已知O的直径CD为
9、4,AOD的度数为60,点B是的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值即是在直线CD上作一点P,使PA+PB的值最小作点A关于CD的对称点A,连接AB,交CD于点P,则AB的长就是PA+PB的最小值连接OA,OB,则AOB=90,OA = OB = 4根据勾股定理,AB = 4例题13如图,MN是半径为1的O的直径,点A在O上,AMN30,B为AN弧的中点,P是直径MN上一动点,则PAPB的最小值为( )A 2 BC 1 D 2即在MN上求一点P,使PA+PB的值最小作点A关于MN的对称点A,连接AB,交MN于点P,则点P就是所要作的点AB的长就是PA+PB的
10、最小值连接OA、OB,则OAB是等腰直角三角形所以 AB = 题型9:一次函数类例题14在平面直角坐标系中,有A(3,2),B(4,2)两点,现另取一点C(1,n),当n =_时,AC + BC的值最小点C(1,n),说明点C在直线x=1上,所以作点A关于直线x=1的对称点A,连接AB,交直线x=1于点C,则AC+BC的值最小设直线AB的解析式为y=kx+b,则-2=-k+b2=4k+b解得:k = (4/5) b = - (6/5)所以:y = (4/5)x-(6/5)当x = 1时,y = -(2/5)故当n = -(2/5)时,AC+BC的值最小例题15一次函数y=kx+b的图象与x、y
11、轴分别交于点A(2,0),B(0,4)(1)求该函数的解析式;(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PCPD的最小值,并求取得最小值时P点坐标(1)由题意得:0 = 2x+b4 = b解得 k = -2,b= 4,所以 y = -2x+4(2)作点C关于y轴的对称点C,连接CD,交y轴于点P则CD = CP+PD = PC+PDCD就是PC+PD的最小值连接CD,则CD = 2,CC = 2在直角CCD中,根据勾股定理 CD = 2求直线CD的解析式,由C(-1,0),D(1,2)所以,有0 = -k+b2 = k+b解得 k = 1,b = 1,所以 y =
12、 x+1当x = 0时,y =1,则P(0,1)题型10:二次函数类例题16如图,在直角坐标系中,点A的坐标为(-2,0),连结0A,将线段OA绕原点O顺时针旋转120。,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(注意:本题中的结果均保留根号)(1)B(1,)(2) (3)因为点O关于对称轴的对称点是点A,则连接AB,交对称轴于点C,则BOC的周长最小,当x=-1时,y = 所以C(-1,)例题17如图,抛物线yx2bx2与x轴交于A,B两点,与
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 专题 复习 轴对称 相关 线段 之和 问题 答案
链接地址:https://www.31ppt.com/p-4113038.html