第5章-离子聚合课件.ppt
《第5章-离子聚合课件.ppt》由会员分享,可在线阅读,更多相关《第5章-离子聚合课件.ppt(76页珍藏版)》请在三一办公上搜索。
1、离子聚合对单体有较高的选择性,聚合机理和动力学研究不如自由基聚合成熟 原因,聚合条件苛刻,微量杂质有极大影响,聚合重现性差聚合速率快,需低温聚合,给研究工作造成困难反应介质的性质对反应也有极大的影响,影响因素复杂,带有1,1-二烷基、烷氧基等强推电子基的单体才能进行阳离子聚合;具有腈基、羰基等强吸电子基的单体才能进行阴离子聚合;羰基化合物、杂环化合物,大多属离子聚合。,5.2 阳离子聚合(Cation polymerization),到目前为止,对阳离子聚合的认识还不很深入 原因:阳离子活性很高,极易发生各种副反应,很难获得高分子量的聚合物 碳阳离子易发生和碱性物质的结合、转移、异构化等副反应
2、构成了阳离子聚合的特点引发过程十分复杂,至今未能完全确定 目前采用阳离子聚合并大规模工业化的产品只有丁基橡胶,1.阳离子聚合单体,具有推电子基的烯类单体原则上可进行阳离子聚合,推电子基团使双键电子云密度增加,有利于阳离子活性种进攻;碳阳离子形成后,推电子基团的存在,使碳上电子云稀少的情况有所改变,体系能量有所降低,碳阳离子的稳定性增加。,称为反离子,从两方面考虑:,质子对碳碳双键有较强的亲合力;增长反应比其它副反应快,即生成的碳阳离子有适当的稳定性。,对单体种类进行讨论(可由热焓H判断):,能否聚合成高聚物,还要求:,烯烃,无取代基,不易极化,对质子亲和力小,不能发生阳离子聚合,质子亲和力较大
3、,有利于反应但一个烷基的供电性不强,Rp不快;仲碳阳离子较活泼,容易重排,生成更稳定的叔碳阳离子,H(kJ/mol)640,757 791,两个甲基使双键电子云密度增加很多,易与质子亲合,820 kJ/mol生成的叔碳阳离子较稳定,可得高分子量的线型聚合物。,故丙烯、丁烯阳离子聚合只能得到低分子油状物,是唯一能进行阳离子聚合的-烯烃,烷基乙烯基醚,诱导效应使双键电子云密度降低,氧的电负性较大,共轭效应使双键电子云密度增加,占主导地位。,p-共轭,共振结构使形成的碳阳离子上的正电荷分散而稳定:,能够进行阳离子聚合,共轭烯烃 如;St,-MeSt,B,I 电子的活动性强,易诱导极化,既能阳离子聚合
4、,又能阴离子聚合 但聚合活性远不如异丁烯、乙烯烷基醚,工业很少进行这类单体的阳离子聚合,引发剂生成阳离子,引发单体生成碳阳离子 电荷转移引发,即引发剂和单体先形成电荷转移络合物而后引发,2.阳离子聚合引发体系及引发作用 阳离子聚合的引发剂都是亲电试剂,即电子接受体,阳离子聚合的引发方式:,质子酸引发 质子酸包括:H2SO4,H3PO4,HClO4,CF3COOH,CCl3COOH,酸要有足够的强度产生H,故弱酸不行酸根的亲核性不能太强,否则会与活性中心结合成共价键而终止,如,质子酸先电离产生H,然后与单体加成形成 引发活性中心 活性单体离子对,条件,HSO4 H2PO4的亲核性稍差,可得到低聚
5、体HClO4,CF3COOH,CCl3COOH的酸根较弱,可生成高聚物,氢卤酸的X亲核性太强,不能作为阳离子聚合引发剂,如HCl引发异丁烯,不同质子酸的酸根的亲核性不同,Lewis酸引发,Lewis酸包括:金属卤化物:BF3,AlCl3,SnCl4,TiCl4,SbCl5,PCl5,ZnCl2 金属卤氧化物:POCl3,CrO2Cl,SOCl2,VOCl3,绝大部分Lewis酸都需要共(助)引发剂,作为质子或碳阳离子的供给体,F-C反应中的各种金属卤化物,都是电子的接受体,称为Lewis酸从工业角度看,是阳离子聚合最重要的引发剂,析出质子的物质:H2O,ROH,HX,RCOOH析出碳阳离子的物
6、质:RX,RCOX,(RCO)2O,如:无水BF3不能引发无水异丁烯的聚合,加入痕量水,聚合反应立即发生:,共引发剂有两类:,引发剂-共引发剂络合物,引发剂和共引发剂的不同组合,其活性也不同 引发剂的活性与接受电子的能力,即酸性的强弱有关 BF3 AlCl3 TiCl4 SnCl4 共引发剂的活性视引发剂不同而不同 如异丁烯聚合,BF3为引发剂,共引发剂的活性:水:乙酸:甲醇 50:1.5:1,对于析出碳阳离子的情况:,对于多数聚合,引发剂与共引发剂有一最佳比,在此条件下,Rp最快,分子量最大,水过量可能生成氧鎓离子,其活性低于引发剂共引发剂络合物,故Rp下降,原因:过量的共引发剂,如水是链转
7、移剂,使链终止,分子量降低,氧鎓离子,活性较低,其它物质引发 其它物质包括:I2,高氯酸乙酸酯,氧鎓离子,高氯酸乙酸酯可能是通过酰基正离子与单体加成引发,电离幅射引发,可形成单体阳离子自由基,经偶合形成双阳离子活性中心。幅射引发最大特点:碳阳离子活性中心没有反离子存在,电荷转移络合物引发,链引发 以引发剂Lewis酸(C)和共引发剂(RH)为例,单体(供电体)和适当受电体生成电荷转移络合物,在热作用下,经离解而引发如乙烯基咔唑和四腈基乙烯(TCE)是一例:,3 阳离子聚合机理,电荷转移络合物,引发活化能低,8.4 21 kJ/mol,故引发速率很快(与自由基慢引发Ed=105 150 kJ/m
8、ol 截然不同),若第二步是速率控制反应,若是第一步是速率控制反应,则引发速率为,此时,引发速率与单体浓度无关,特点:,链增长 单体不断插入到碳阳离子和反离子形成的离子对中间进行链增长,增长活化能与引发活化能一样低,速率快增长活性中心为一离子对,结合的紧密程度对聚合速率和分子量有一定影响单体插入聚合,对链节构型有一定的控制能力,增长速率为,特点:,增长过程可能伴有分子内重排反应 如 3-甲基-1-丁烯聚合产物有两种结构:,链转移和链终止 离子聚合的增长活性中心带有相同的电荷,不能双分子终止,只能发生链转移终止或单基终止 这一点与自由基聚合显著不同,重排通常是通过电子或个别原子的转移进行的这种通
9、过增长链碳阳离子发生重排的聚合反应称为异构化聚合,向单体转移终止 活性链向单体转移,生成的大分子含有不饱和端基,同时再生出活性单体离子对,动力学链不终止,向单体转移是主要的链终止方式之一 向单体转移常数CM,约为102104,比自由基聚合(104105)大,易发生转移反应(是控制分子量的主要因素,也是阳离子聚合必须低温反应的原因),反应通式为,转移速率为:,特点:,自发终止或向反离子转移终止 增长链重排导致活性链终止,再生出引发剂共引发剂络合物,反应通式:,动力学链终止,自发终止速率:,与反离子加成终止,与反离子中的阴离子部分加成终止,苯醌既是自由基聚合的阻聚剂,又对阳离子聚合起阻聚作用,链终
10、止剂 XA 主要有:水、醇、酸、酐、酯、醚、胺,加入链转移剂或终止剂(XA)终止 是阳离子聚合的主要终止方式,聚合体系多为非均相聚合速率快,数据重现性差共引发剂、微量杂质对聚合速率影响很大真正的终止反应不存在,稳态假定难以建立,对特定的反应条件:苯乙烯SnCl4体系,终止反应是向反离子转移(自发终止)动力学方程可参照自由基聚合来推导,阳离子聚合机理的特点:快引发,快增长,易转移,难终止,4 阳离子聚合反应动力学,比自由基聚合研究困难,建立稳态,增长,终止,动力学方程,引发:,引发剂引发生成碳阳离子的反应是控制速率反应,Rp 对引发剂、共引发剂浓度呈一级反应,对单体浓度呈二级反应讨论:,是假定引
11、发过程中引发剂引发单体生成碳阳离子的反应是控制速率反应,因此Ri与单体浓度有关;若引发剂与共引发剂的反应是慢反应,则 Ri与单体浓度无关,Rp与单体浓度一次方成正比该动力学方程也适合于与反离子加成终止、向单体转移终止(表达式有变动),但不宜推广到其它聚合体系离子聚合无双基终止,不会出现自动加速现象,聚合度,自发终止为主要终止方式时,向单体链转移为主要终止方式时,综合式,各基元反应速率常数,速率常数 阳离子聚合 自由基聚合 kp(l/mols)7.6 100 kt 4.9102(s1)10 7(l/mols)kp/kt 102 kp/kt1/2 102 活性种浓度 C*103 M 108,Rp阳
12、 Rp自,快引发,快增长,易转移,难终止,5 影响阳离子聚合的因素,溶剂的影响,活性中心离子对的形态 在不同溶剂中,活性中心离子和反离子有不同形态,大多数聚合活性种处于平衡离子对和自由离子状态 kp(+):自由离子增长速率常数 kp():离子对增长速率常 kp(+)kp()13个数量级,共价键 紧密离子对 被溶剂隔开的离子对 自由离子 平衡离子对,反离子的影响,溶剂的极性和溶剂化能力的影响 溶剂的极性和溶剂化能力大,自由离子和疏松离子对的比例增加,聚合速率和分子量增大 但要求:不能与中心离子反应;在低温下溶解反应物保持流动性。故采用低极性溶剂,如卤代烷 溶剂的极性常用介电常数 表示。,表观kp
13、,反离子的亲核性 亲核性强,易与碳阳离子结合,使链终止反离子的体积 体积大,离子对疏松,聚合速率大 体积大,离子对疏松,空间障碍小,Ap大,kp大,综合活化能为正值时,温度降低,聚合速率减小综合活化能为负值时,温度降低,聚合速率加快综合活化能的绝对值较小,温度影响也较小,温度的影响,对聚合速率的影响,综合速率常数,对聚合度的影响,Et 或 Etr,M 一般总大于Ep,综合活化能为负值,为12.5 29 kJ/mol因此,聚合度随温度降低而增大。这是阳离子聚合在较低温度下进行聚合的原因.,5.3 阴离子聚合,具有吸电子取代基的烯类单体原则上可以进行阴离子聚合 能否聚合取决于两种因素,(1)是否具
14、有共轭体系 吸电子基团并具有共轭体系,能够进行阴离子聚合,如AN、MMA、硝基乙烯 吸电子基团并不具有共轭体系,则不能进行阴离子聚合,如VC、VAc(2)与吸电子能力有关+e 值越大,吸电子能力越强,易进行阴离子聚合,1.阴离子聚合单体,2.引发体系及引发作用,(1)碱金属引发 Li、Na、K外层只有一个价电子,容易转移给单体或中间体,生成阴离子引发聚合,电子直接转移引发,阴离子聚合的活性中心是阴离子,对于,为金属反离子,活性中心可以是自由离子、离子对以及它们的缔合状态,单体自由基阴离子,由亲核试剂(碱类)提供,,电子间接转移引发 碱金属将电子转移给中间体,形成自由基阴离子,再将活性转移给单体
15、,如萘钠在THF中引发St,双阴离子活性中心,THF,碱金属不溶于溶剂,属非均相体系,利用率低,(红色),(绿色),(红色),萘钠在极性溶剂中是均相体系,碱金属的利用率高,金属氨基化合物 是研究得最早的一类引发剂 主要有 NaNH2液氨、KNH2 液氨 体系,(2)有机金属化合物引发,形成自由阴离子,金属烷基化合物 引发活性与金属的电负性有关 金属的电负性如下,K Na Li Mg Al电负性 0.8 0.9 1.0 1.21.3 1.5金属碳键 KC NaC LiC MgC AlC键的极性 有离子性 极性共价键 极性弱 极性更弱引发作用 活泼引发剂 常用引发剂 不能直接引发 不能,如丁基锂以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 离子 聚合 课件
链接地址:https://www.31ppt.com/p-4095919.html