第三章x射线衍射分析教材课件.ppt
《第三章x射线衍射分析教材课件.ppt》由会员分享,可在线阅读,更多相关《第三章x射线衍射分析教材课件.ppt(264页珍藏版)》请在三一办公上搜索。
1、第三章 x射线衍射分析,伟大的物理学家,X射线发明者-伦琴,德国维尔茨堡大学校长(W.K.Rontgen,1845-1923),伦琴在给孔特(A.Kundt,1839-1894)的信中说:,我终于发现了一种光,我不知道是什么光,无以名之,就把它叫做X光吧。,伦琴的实验室,第一张X光片,1895年德国物理学家-“伦琴”发现X射 线1895-1897年伦琴搞清楚了X射线的产生、传播、穿透力等大部分性质1901年伦琴获诺贝尔奖1912年劳埃进行了晶体的X射线衍射实验,在X射线发现后几个月医生就用它来为病人服务。李鸿章在X光被发现后仅7个月就体验了此种新技术,成为拍X光片检查枪伤的第一个中国人。,X射
2、线最早的应用,左图是纪念伦琴发现X射线100周年发行的纪念封,X射线的性质,人的肉眼看不见X射线,但X射线能使气体电离,使照相底片感光,能穿过不透明的物体,还能使荧光物质发出荧光。X射线呈直线传播,在电场和磁场中不发生偏转;当穿过物体时仅部分被散射。X射线对动物有机体(其中包括对人体)能产生巨大的生理上的影响,能杀伤生物细胞。,X射线的本质是电磁辐射,与可见光完全相同,仅是波长短而已,因此具有波粒二像性。X射线的波长范围:0.01-100 表现形式:在晶体作衍射光栅观察到的X射线的衍射现象,即证明了X射线的波动性。硬X射线:波长较短的硬X射线能量较高,穿透性较强,适用于金属部件的无损探伤及金属
3、物相分析。软X射线:波长较长的软X射线能量较低,穿透性弱,可用于分析非金属的分析。,X射线的波粒二相性,X射线波长的度量单位常用埃()或晶体学单(kX)表示;通用的国际计量单位中用纳米(nm)表示,它们之间的换算关系为:1nm=10=10-9m 1kX=1.00207720.000053(1973年值)。,X射线的波粒二相性,X射线的波粒二相性,粒子性特征表现为以光子形式辐射和吸收时具有的一定的质量、能量和动量。表现形式为在与物质相互作用时交换能量。如光电效应;二次电子等。X射线的频率、波长以及其光子的能量、动量p之间存在如下关系:,式中h普朗克常数,等于6.62510-34 J.s;cX射线
4、的速度,等于2.998108 cm/s.,一、X射线的产生与X射线谱,高速运动的电子与物体碰撞时,发生能量转换,电子的运动受阻失去动能,其中一小部分(1左右)能量转变为X射线,而绝大部分(99左右)能量转变成热能使物体温度升高。,1源X射线的产生,产生条件,1.产生自由电子;2.使电子作定向的高速运动;3.在其运动的路径上设置一个障碍物使电子突然减 速或停止。,X射线管的结构,X射线管,(1)阴极发射电子。一般由钨丝制成,通电加热后释放出热辐射电子。(2)阳极靶,使电子突然减速并发出X射线。(3)窗口X射线出射通道。既能让X射线出射,又能使管密封。窗口材料用金属铍或硼酸铍锂构成的林德曼玻璃。窗
5、口与靶面常成3-6的斜角,以减少靶面对出射X射线的阻碍。,封闭式X射线管实质上就是一个大的真空()二极管。基本组成包括:,(4)高速电子转换成X射线的效率只有1%,其余99%都作为热而散发了。所以靶材料要导热性能好,常用黄铜或紫铜制作,还需要循环水冷却。因此X射线管的功率有限,大功率需要用旋转阳极。(5)焦点阳极靶表面被电子轰击的一块面积,X射线就是从这块面积上发射出来的。焦点的尺寸和形状是X射线管的重要特性之一。焦点的形状取决于灯丝的形状,螺形灯丝产生长方形焦点。,X射线衍射工作中希望细焦点和高强度;细焦点可提高分辨率;高强度则可缩短暴光时间。,X射线管,特殊构造的X射线管;,(1)细聚焦X
6、射线管;在X射线管阴阳极之间,添加一套静电透镜或电磁透镜,使阴极发射的电子束聚焦在阳极上,焦斑只有几个微米到几十微米。虽然电子束流减小,但因焦斑小,单位焦斑面积发射的X射线强度增加。这种X射线管,除了可以缩短拍摄照片得到极细的X射线束,有利于提高结构分析的精度。(2)旋转阳极X射线管 采用适当的方法使阳极高速旋转,这样,可使靶面受电子轰击的部位焦斑随进改变,有利于散热,可以提高X射线管的额定功率几倍到几十倍。,市场上供应的种类,(1)密封式灯丝X射线管;最常使用的X射线管,它的靶和灯丝密封在高真空的壳体内。壳体上有对X射线“透明”的X射线出射“窗孔”。靶和灯丝不能更换,如果需要使用另一种靶,就
7、需要换用另一只相应靶材的管子。这种管子使用方便,但若灯丝烧断后它的寿命也就完全终结了。密封式X射线管的寿命一般为10002000小时,它的报废往往并不是与因灯丝损坏,而是由于靶面被熔毁或因受到钨蒸气及管内受热部分金属的污染,致使发射的X射线谱线“不纯”而被废用。,市场上供应的种类,(2)可拆式灯丝X射线管 这种X射线管在动真空下工作,配有真空系统,使用时需抽真空使管内真空度达到105毫帕或更佳的真空度。不同元素的靶可以随时更换,灯丝损坏后也可以更换,这种管的寿命可以说是无限的。,2连续X射线谱,X射线强度与波长的关系曲线,称之X射线谱。在管压很低时,小于20kv的曲线是连续变化的,故称之连续X
8、射线谱,即连续谱。,对连续X射线谱的解释,根据经典物理学的理论,一个带负电荷的电子作加速运动时,电子周围的电磁场将发生急剧变化,此时必然要产生一个电磁波,或至少一个电磁脉冲。由于极大数量的电子射到阳极上的时间和条件不可能相同,因而得到的电磁波将具有连续的各种波长,形成连续X射线谱。,对连续X射线谱的解释,量子力学概念,当能量为ev的电子与靶的原子整体碰撞时,电子失去自己的能量,其中一部分以光子的形式辐射出去,每碰撞一次,产生一个能量为hv的光子,即“韧致辐射”。大量的电子在到达靶面的时间、条件均不同,而且还有多次碰撞,因而产生不同能量不同强度的光子序列,即形成连续谱。极限情况下,能量为ev的电
9、子在碰撞中一下子把能量全部转给光子,那么该光子获得最高能量和具有最短波长,即短波限0。都有一个最短波长,称之短波限0,强度的最大值在0的1.5倍处。eV=hvmax=hc/0,连续谱总强度(I连)即I()曲线积分面积,有经验公式:,式中:a常数,可见,连续X射线的总能量随管电流、阳极靶原子序数和管电压的增加而增大。,3特征X射线谱,随电压增加,X谱线上出现尖峰。尖峰在很窄的电压范围出现,产生X光的波长范围也很窄,称为特征X射线。它和可见光中的单色相似,亦称单色X射线。(characteristic peaks),钼靶X射线管当管电压等于或高于20KV时,则除连续X射线谱外,位于一定波长处还叠加
10、有少数强谱线,它们即特征X射线谱。钼靶X射线管在35KV电压下的谱线,其特征x射线分别位于0.63和0.71处,后者的强度约为前者强度的五倍。这两条谱线称钼的K系辐射。,3特征X射线谱,3特征X射线谱,特征X射线的产生:若管电压增至某一临界值(称激发电压)使撞击靶材的电子具有足够能量时,可使靶原子内层产生空位,此时较外层电子将向内层跃迁产生辐射即特征X射线。,特征X射线光子能量(相应的频率及波长)取决于跃迁前后能级差。,特征X射线的产生机理,特征X射线的产生机理与靶物质的原子结构有关。,原子壳层按其能量大小分为数层,通常用K、L、M、N等字母代表它们的名称。,但当管电压达到或超过某一临界值时,
11、则阴极发出的电子在电场加速下,可以将靶物质原子深层的电子击到能量较高的外部壳层或击出原子外,使原子电离。,阴极电子将自已的能量给予受激发的原子,而使它的能量增高,原子处于激发状态。,如果K层电子被击出K层,称K激发,L层电子被击出L层,称L激发,其余各层依此类推。,特征X射线的产生机理,处于激发状态的原子有自发回到稳定状态的倾向,此时外层电子将填充内层空位,相应伴随着原子能量的降低。原子从高能态变成低能态时,多出的能量以X射线形式辐射出来。因物质一定,原子结构一定,两特定能级间的能量差一定,故辐射出的特征X射波长一定。,以K层产生空位为例,当一个外来电子将K层的一个电子击出成为自由电子(二次电
12、子),这时原子就处于高能的不稳定状态,必然自发地向稳态过渡。此时位于较外层较高能量的L层电子可以跃迁到K层。这个能量差 E=EL-EK=h将以电磁波的形式放射出去,其波长 h/E必然是个仅仅取决于原子序数的常数。,Ka l=0.154nm DE=1.29 10-15J,Kb l=0.139nm DE=0.15 10-15J,La l=1.336nm DE=1.43 10-15J,Copper铜,K,L,M,LK,产生KMK,产生K,特征X射线,由能级可知K辐射的光子能量大于K的能量,但K层与L层为相邻能级,故L层电子填充几率大,所以K的强度约为K的5倍。产生K系激发要阴极电子的能量eVk至少等
13、于击出一个K层电子所作的功Wk。阴极电子的能量必须满足eVWKhK,才能产生K激发。其临界值为eVKWK,VK称之临界激发电压。,若K层产生空位,其外层电子向K层跃迁产生的X射线统称为K系特征辐射,其中由L层或M层或更外层电子跃迁产生的K系特征辐射分别顺序称为K,K,射线;,K系特征辐射,若L层产生空位,其外M,N,层电子向其跃迁产生的谱线分别顺序称为L,L,射线,并统称为L系特征辐射。,L系特征辐射,M系等依次类推,特征(标识)X射线产生的根本原因是原子内层电子的跃迁。(1)不同Z,有不同特征X射线,K、K也不同。(2)若V低于激发电压Vk,则无K、K产生。,特征X射线波长与靶材料原子序数有
14、关,原子序数越大,核对内层电子引力上升,下降,莫塞莱定律,标识X射线谱的频率和波长只取决于阳极靶物质的原子能级结构,是物质的固有特性。莫塞莱定律:标识X射线谱的波长与原子序数Z关系为:C为常数,Z为原子序数,为K壳层的屏蔽系数R=1.0961107/m,里德伯常数,标识X射线的强度特征,K系标识X射线的强度与管电压、管电流的关系为:当I标/I连最大,工作电压为K系激发电压的35倍时,连续谱造成的衍射背影最小。,二、X射线与物质的相互作用,X射线与物质的相互作用,是一个比较复杂的物理过程。,一束X射线通过物体后,其强度将被衰减,它是被散射和吸收的结果,并且吸收是造成强度衰减的主要原因。,X射线与
15、物质相互作用的总结,热能,透射X射线衰减后的强度I0,散射X射线,电子,荧光X射线,相干的,非相干 的,反冲电子,俄歇电子,光电子,康普顿效应,俄歇效应,光电效应,X射线与物质的作用分为散射、吸收、透射,1、散射,(1)相干散射,入射光子与电子刚性碰撞,其辐射出电磁波的波长和频率与入射波完全相同,新的散射波之间将可以发生相互干涉相干散射。相干散射是X射线在晶体中产生衍射现象的基础。,(2)非相干散射,当物质中的电子与原子之间的束缚力较小(如原子的外层电子)时,电子可能被X光子撞离原子成为反冲电子。因反冲电子将带走一部分能量,使得光子能量减少,从而使随后的散射波波长发生改变,成为非相干散射。,2
16、 吸收,(1)光电效应,除了被散射和透射掉一部分外,X射线能量主要将被物质吸收,这种能量转换包括光电效应和俄歇效应。,当入射X光子的能量足够大时,还可以将原子内层电子击出使其成为光电子,同时辐射出波长严格一定的特征X射线。为区别于电子击靶时产生的特征辐射,由X射线发出的特征辐射称为二次特征辐射,也称为荧光辐射。(荧光光谱分析原理是光电效应),光电子,荧光辐射,(2)俄歇效应,如果原子K层电子被击出,L层电子向K层跃迁,其能量差不是以产生K系X射线光量子的形式释放,而是被邻近电子所吸收,使这个电子受激发而逸出原子成为自由电子-俄歇电子(Auger electrons)。这种现象叫做俄歇效应。,3
17、 透射与衰减,设强度为I0的入射线透人样品厚度x处时强度为I(x)I(x)通过微厚度dx后,其相对变化dI(x)/I(x)与dx成正比,即,式中:比例系数,称线吸收系数(cm-1),表示X射线通过单位长度物质时强度的衰减。,(2-28),实验证明,X射线透过物质时引起的强度衰减与所通过的距离成正比。,设样品厚度t,透射强度It,对式(2-28)积分 即:,(2-29),即为X射线衰减规律,设m=/(为物质密度),则(2-29)变为,(2-30),m-质量吸收系数,表示单位时间内单位体积物质对X射线的吸收量,-为物质密度。,质量吸收系数m与波长 和原子序数Z存在如下关系:m=K 3Z3 m随的变
18、化是不连续的其间被尖锐的突变分开。突变对应的波长为K吸收限。,即:当吸收物质一定时,X射线的波长越长越容易被吸收;X射线的波长固定时,吸收体的原子序数越高,X射线越容易被吸收。,不同元素的m不同,H0.435Si60.6C4.60S89.1N7.52Cl106O11.5Br99.6F16.4I294,质量衰减系数m,若物质是由,n(n2)个元素组成的混合物、化合物、合金等,则m由下式计算,即,式中:(m)j元素j的质量衰减系数;Wj元素j的质量分数。,吸收限,上式形式上与短波限非常相似,但物理意义完全不同。0=1.24/V(nm)连续谱的短波限0随管电压的增高而减小,而k说明每种物质的K激发限
19、波长都有它自己特定的值。从X射线激发光电效应的角度,称K为激发限;然而,从X射线被物质吸收的角度,则称K为吸收限。,激发K系光电效应时,入射光子的能量必须等于或大于将K电子从K层移至无穷远时所作的功WK,即,将激发限波长K和激发电压VK联系起,即,式中VK以V为单位。,吸收限的应用,吸收限主要是由光电效应引起的:当X射线的波长等于或小于k时,光子的能量E可以击出一个K层电子,这时X射线被吸收,激发光电效应。使m突变性增大。吸收限与原子能级的精细结构对应。如L系有三个副层,有三个吸收限。,(1)它的吸收限位于辐射源的K和K之间,且尽量靠近K。强 烈吸收K,K吸收很小;(2)滤波片的厚度以将K强度
20、降低一半最佳。Z靶40时 Z滤片=Z靶-2;,应用1滤波片的选择,常用滤波片,原则:阳极靶K波长稍大于试样的K吸收限。既避免了荧光X射线的产生,也使试样对X射线的吸收最小。Z靶Z试样+1。如研究纯铁,选择钴或铁靶,而不能用镍或铜靶。若试样含有多种元素,以其主要组元中原子序数最小的元素 选择阳极靶。,应用2阳极靶的选择,X射线的探测,荧光屏法;荧光板是将ZnS、CdS等荧光材料涂布在纸板上制成,常用来确认光源产生的原射线束的存在。照相法;X射线与可见光一样,能够使感光乳剂感光。当感光乳剂受到X射线照射后,AgBr颗粒离解形成显影核,经过显影而游离出来的单质银微粒使感光处变黑。是最早使用的检测并记
21、录X射线的方法,直到现在仍是一种常用的基本方法。辐射探测器法;X射线光子对气体和某些固态物质的电离作用可以用来检查X射线的存在与否和测量它和强度。按照这种原理制成的探测X射线的仪器电离室和各种计数器。,X射线的安全防护,X射线设备的操作人员可能遭受电震和辐射损伤两种危险。电震的危险在高压仪器的周围是经常地存在的,X射线的阴极端为危险的源泉。在安装时可以把阴极端装在仪器台面之下或箱子里、屏后等方法加以保证。辐射损伤是过量的X射线对人体产生有害影响。可使局部组织灼伤,可使人的精神衰颓、头晕、毛发脱落、血液的组成和性能改变以及影响生育等。安全措施有:严格遵守安全条例、配带笔状剂量仪、避免身体直接暴露
22、在X射线下、定期进行身体检查和验血。,X射线等短波谱域的电磁波具有杀伤生物细胞的作用,过量照射将对人体产生有害影响,其影响程度取决于波长、强度、照射时间和人体接受部位等由于铅可强烈吸收X射线(m很大),故在实验室内可采用铅屏或铅玻璃屏屏蔽,必要时操作人员可使用铅玻璃眼镜、铅橡胶手套和铅围裙等防护用具。,X射线衍射的几何原理,1.1895年伦琴发现X射线后,认为是一种波,但无 法证明。2.当时晶体学家对晶体构造(周期性)也没有得 到证明。1912年劳厄将X射线用于CuSO4晶体衍射同时证明了这两个问题,从此诞生了X射线晶体衍射学。,劳厄用X射线衍射同时证明了这两个问题,1.人们对可见光的衍射现象
23、有了确切的了解:光栅常数只要与点光源的光波波长为同一数量级,就可产生衍射,衍射花样取决于光栅形状。2.晶体学家和矿物学家对晶体的认识:晶体是由原子或分子为单位的共振体(偶极子)呈周期排列的空间点阵,各共振体的间距大约是10-8-10-7cm,M.A.Bravais已计算出14种点阵类型。,利用射线研究晶体结构中的各类问题,主要是通过X射线在晶体中产生的衍射现象。当一束X射线照射到晶体上时,首先被电子所散射,每个电子都是一个新的辐射波源,向空间辐射出与入射波同频率的电磁波。每个原子又有多个电子,各电子所产生的散射波会相互干涉。使在某些方向被加强,另一些方向则被削弱。,可以把晶体中每个原子都看作一
24、个新的散射波源,它们各自向空间辐射与入射波同频率的电磁波。由于这些散射波之间的干涉作用,使得空间某些方向上的波则始终保持相互叠加,于是在这个方向上可以观测到衍射线,而另一些方向上的波则始终是互相是抵消的,于是就没有衍射线产生。,X射线在晶体中的衍射现象,实质上是大量的原子散射波互 相干涉的结果。,晶体所产生的衍射花样都反映出晶体内部的原子分布规律。概括地讲,一个衍射花样的特征,可以认为由两个方面的内容组成:衍射线在空间的分布规律(即衍射几何):由晶胞的大小、形状和位向决定 衍射线束的强度:取决于原子的品种和它们在晶胞中的位置。,X射线衍射理论所要解决的中心问题在衍射现象与晶体结构之间建立起定性
25、和定量的关系。,研究X射线衍射可归结为两方面的问题:,衍射方向和衍射强度 衍射方向问题是依靠布拉格方程(或倒易点阵)的理论导出的;衍射强度主要介绍多晶体衍射线条的强度,将从一个电子的衍射强度研究起,接着研究一个原子的、一个晶胞的以至整个晶体的衍射强度,最后引入一些几何与物理上的修正因数,从而得出多晶体衍射线条的积分强度。,劳埃方程的导出,对于三维情形,就可以得到晶体光栅的衍射条件:a(cos0-cos)=Hb(cos0-cos)=Kc(cos0-cos)=L 该方程组即为Laue方程。H,K,L称为衍射指数。,0,0,0分别为散射光和入射光与三个点阵轴矢的夹角。,用劳厄方程描述x射线被晶体的衍
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第三 射线 衍射 分析 教材 课件
链接地址:https://www.31ppt.com/p-4093695.html