第四章-地球椭球数学投影1011节课件.ppt
《第四章-地球椭球数学投影1011节课件.ppt》由会员分享,可在线阅读,更多相关《第四章-地球椭球数学投影1011节课件.ppt(25页珍藏版)》请在三一办公上搜索。
1、Fundation of Geodesy,1,Fundation of Geodesy,2,基本公式如下:,Fundation of Geodesy,3,UTM投影变形的特点:UTM投影的中央经线长度比为0.999 6,这是为了使得,处的最大变形值小于0.001而选择的数值。两条割线(在赤道上,它们位于离中央子午线大约(约)处)上没有长度变形;离开这两条割线愈远变形愈大;在两条割线以内长度变形为负值;在两条割线之外长度变形为正值。UTM投影带的划分:UTM投影的分带是将全球划分为60个投影带,带号1,2,3,60连续编号,每带经差为,从经度180和17之间为起始带(1带),连续向东编号。,Fu
2、ndation of Geodesy,4,直角坐标系的实用公式:4.10.2高斯投影簇的概念 高斯投影簇是概括依经线分带的一簇横轴等角投影。它应满足的投影条件是:1.中央经线和赤道投影后为相互垂直的直线,且为投影的对称轴;2.投影具有等角性质;3.中央经线上的长度比。,Fundation of Geodesy,5,Fundation of Geodesy,6,高斯投影簇变形的特点:1.设q=0,则m,该投影即为高斯.克吕格投影。2.设q=0.0004,K=0,则m0.9996,该投影即为通用横轴墨卡托投影。3.设q=0.000609,K=1,则,该投影即为双标准经线等角横椭圆柱投影。4.设q=
3、0.000609,K=1.5,则,该投影在分界子午线与赤道交点处变形最大,达0.077%,Fundation of Geodesy,7,4.11 兰勃脱投影概述 4.11.1兰勃脱投影基本概念 兰勃脱(Lambert)投影是正形正轴圆锥投影。设想用一个圆锥套在地球椭球面上,使圆锥轴与椭球自转轴相一致,使圆锥面与椭球面一条纬线相切,将椭球面上的纬线投影到圆锥面上成为同心圆,经线投影圆锥面上成为从圆心发出的辐射直线,然后沿圆锥面某条母线(一般为中央经线L),将圆锥面切开而展成平面,从而实现了兰勃脱切圆锥投影。,Fundation of Geodesy,8,Fundation of Geodesy,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第四 地球 椭球 数学 投影 1011 课件
链接地址:https://www.31ppt.com/p-4092015.html