北师大版八年级(下)数学知识点归纳总结材料.doc
《北师大版八年级(下)数学知识点归纳总结材料.doc》由会员分享,可在线阅读,更多相关《北师大版八年级(下)数学知识点归纳总结材料.doc(37页珍藏版)》请在三一办公上搜索。
1、八年级下册 第一章 三角形的证明第1节 等腰三角形一、全等三角形的性质与判定1、全等三角形的性质定理1 全等三角形的对应边相等。定理2 全等三角形的对应角相等。推论1 全等三角形的面积相等。推论2 全等三角形的周长相等。2、全等三角形的判定公理1 两边夹角对应相等的两个三角形全等(SAS)公理2 两角及其夹边对应相等的两个三角形全等(ASA)公理3 三边对应相等的两个三角形全等(SSS)定理1 两角及其中一角的对边对应相等的两个三角形全等(AAS)定理2 斜边和一条直角边分别相等的两个直角三角形全等。(HL)二、等腰三角形的性质与判定1、等腰三角形的性质定理 等腰三角形的两个底角相等。(等边对
2、等角)推论1 等腰三角形顶角平分线、底边上的中线和底边上的高互相重合。(三线合一)推论2 等腰三角形两腰上的中线、两腰上的高、两个底角的平分线都相等,并且它们的交点到底边两端点距离相等。【说明】等腰直角三角形的两个底角相等且等于45。等腰三角形的底角只能为锐角,不能为钝角或直角,但顶角可为钝角或直角。等腰三角形的三边关系:设腰长为a,底边长为b,周长为C,则a等腰三角形的三角关系:设顶角为C,底角为A、B,则C1802A1802B,AB2、等腰三角形的判定 定义:有两条边相等的三角形叫做等腰三角形。 定理:有两个角相等的三角形是等腰三角形。(等角对等边)三、等边三角形的性质与判定1、等边三角形
3、的性质定理1 等边三角形的三条边都相等。定理2 等边三角形的三个角都相等,并且每个角都等于60。推论:在直角三角形中,如果有一个锐角等于30,那么它所对直角边等于斜边一半。2、等边三角形的判定 定义:三条边都相等的三角形叫做等边三角形。 定理:三个角都相等的三角形是等边三角形。 推论:有一个角等于60的等腰三角形是等边三角形。四、反证法小明认为,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等。你认为这个结论成立吗?如果成立,你能证明它吗?小明是这样想的:你能理解他的推理过程吗?小明在证明时,先假设命题的结论不成立,然后由此推导出了与定义、基本事实、已有定理或已知条件相矛盾的结果
4、,从而证明命题的结论一定成立。这种证明方法叫做反证法。第2节 直角三角形一、直角三角形的性质与判定1、直角三角形的性质 定理1:直角三角形的两个锐角互余。(角的特征) 定理2:直角三角形的两条直角边的平方和等于斜边的平方。(勾股定理)(边的特征)2、直角三角形的判定 定义:有一个角是直角的三角形叫做直角三角形。 定理1:有两个角互余的三角形是直角三角形。 定理2:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。二、已知一条直角边和斜边作直角三角形1、尺规作图已知:如图1-2-16所示,线段a,c(ac),直角 求作:RtABC,使C,BCa,ABc 作法:2、直角三角形全等
5、的判定定理 斜边和一条直角边分别相等的两个直角三角形全等。(HL)三、互逆命题与互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。相对于逆命题来说,另一个命题就为原命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,我们称它们为互逆定理。其中一个定理称为另一个定理的逆定理。相对于逆定理来说,另一个命题就为原定理。第3节 线段的垂直平分线一、线段的垂直平分线1、性质定理线段垂直平分线上的点到这条线段两个端点的距离相等。2、判定定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。3、三角
6、形三条边的中垂线性质定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。二、已知底边及底边上的高作等腰三角形已知:如图1-3-11(1)所示,线段a、h求作:ABC,使ABAC,BCa,高ADh作法:作线段BCa;作线段BC的垂直平分线MN交BC于D点;在MN上截取线段DA,使DAh;连接AB、AC,则ABC就是所求作的三角形(如图1-3-11(2)所示)三、过一点作已知直线的垂线1、过直线上一点作已知直线的垂线已知:直线l和l上一点P,求作:直线l的垂线,使它经过点P 作法:以点P为圆心,以任意长为半径作弧,交直线l于点A和点B;作线段AB的垂直平分线MN,则直线MN垂直
7、于直线l,且经过点P。(如图1-3-12所示)2、过直线外一点作已知直线的垂线已知:直线l和直线l外一点P求作:直线l 的垂线,使它经过点P 作法:任取一点K,使点K与点P分居直线l的两侧;以点P为圆心,PK长为半径作弧,交直线l于点A和点B;作线段AB的垂直平分线MN,则直线MN垂直于直线l,且经过点P。(如图1-3-13所示)第4节 角平分线一、角平分线1、性质定理:角平分线上的点到这个角的两边的距离相等。2、判定定理:在一个角的部,到角的两边距离相等的点在这个角的平分线上。3、三角形三个角的平分线性质定理三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。【说明】列表比较三角形
8、三边的垂直平分线和三条角平分线的性质定理三角形的分类三边垂直平分线三个角平分线三角形锐角三角形交于三角形一点交于三角形一点直角三角形交于三角形外一点钝角三角形交于斜边的中点交点性质到三个顶点的距离相等到三条边的距离相等二、用尺规作一个角的平分线(回顾) 已知:AOB 求作:射线OC,使AOCBOC 作法:以点O为圆心,以任意长为半径作弧,交OA于点D,交OB于点E; 分别以点D、E为圆心,以大于的长为半径作弧,两弧在AOB的部交于点P;过点P作射线OC,则AOCBOC,即OC是AOB的平分线第二章 一元一次不等式与一元一次不等式组第1节 不等关系一、不等式的概念一般地,用符号“”(或“”),“
9、”(或“”)连接的式子叫做不等式。需要说明的是,用“”连接的式子也是不等式。【说明】“不大于”指的是“等于或小于”,通常用符号“”表示;“不小于”指的是“等于或大于”,通常用符号“”表示。二、不等式的分类1、绝对不等式:在任何条件下都成立的不等式。如53,x20,|y|1等。2、矛盾不等式:在任何条件下都不成立的不等式。如23,a20等。3、条件不等式:在一定条件下才能成立的不等式。如x20,当x2时不等式成立;当x2时不等式不成立。三、常见的不等式基本语言的含义1、若x0,则x是正数 2、若x0,则x是负数3、若x0,则x是非负数 4、若x0,则x是非正数5、若xy0,则x大于y 6、若xy
10、0,则x小于y7、若xy0,则x不小于y 8、若xy0,则x不大于y9、若xy0(或0),则x、y同号; 10、若xy0(或0),则x、y异号第2节 不等式的基本性质一、不等式的基本性质1、文字叙述不等式的基本性质1 不等式的两边都加(或减)同一个整式,不等号的方向不变。不等式的基本性质2 不等式的两边都乘(或除以)同一个正数,不等号的方向不变。不等式的基本性质3 不等式的两边都乘(或除以)同一个负数,不等号的方向改变。2、字母表示不等式的基本性质1:如果ab,那么acbc;如果ab,那么acbc不等式的基本性质2:如果ab,c0,那么acbc,如果ab,c0,那么acbc,不等式的基本性质3
11、:如果ab,c0,那么acbc,如果ab,c0,那么acbc,二、不等式的其他性质1、如果ab,那么ba;如果ab,那么ba(对称性)2、如果ab,bc,那么ac;如果ab,bc,那么ac;(传递性)3、如果ab,cd,那么acbd;如果ab,cd,那么acbd;4、如果ab0,cd0,那么acbd;如果ab0,cd0,那么acbd;5、如果ab0,cd0,那么acbd;如果ab0,cd0,那么acbd;6、如果ab0,那么|a|b|;如果ab0,那么|a|b|;7、如果ab0,那么(n为正整数);8、如果ab0,那么(n为正奇数);如果ab0,那么(n为正偶数);三、不等式的三个基本性质与等
12、式的两个基本性质比较1、相同点:不管是等式还是不等式,在它们的两边都加(或减)同一个数或同一个整式,结果仍然成立。2、不同点:对于等式来说,在等式的两边都乘(或除以)同一个正数(或负数),等式仍然成立;但对于不等式来说,在不等式的两边都乘(或除以)同一个正数,不等号的方向不变,而在不等式的两边都乘(或除以)同一个负数,不等号要改变方向。第3节 不等式的解集一、不等式的解能使不等式成立的未知数的值,叫做不等式的解。如,6是不等式x5的解,7,8,9,10也是不等式x5的解。【说明】不等式的解可能是有限个,也可能是无限个,还可能不存在,即无解。例如,不等式0的解只有一个为x0,不等式x21的解有无
13、数个,而不等式0无解。二、不等式的解集1、定义一个含有未知数的不等式的所有解组成这个不等式的解集。例如,不等式x15的解集是x4,不等式0的解集是x0,不等式0的解集是空集。2、表示方法(1)用不等式表示一般地,一个含有未知数的不等式有无数个解,它的解集是某个围,这个围可以用一个简单的不等式xa(xa)或xa(xa)的形式表示出来。(2)用数轴表示在数轴上表示不等式的解集的步骤A、画数轴B、定界点:若解集包含“界点”,则用实心圆点;若解集不包含“界点”,则用空心圆圈。C、定方向:相对于“界点”而言,大于向右画,小于向左画。在数轴上表示不等式的解集的方法三、解不等式1、定义:求不等式的解集的过程
14、叫做解不等式。2、主要依据:不等式的基本性质第4节 一元一次不等式一、一元一次不等式的概念不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。二、解一元一次不等式的基本步骤步骤变形名称具体做法去分母在不等式两边同时乘以各分母的最小公倍数去括号先去小括号,再去中括号,最后去大括号移项把含有未知数的项移到不等号左边,其他项移到不等号右边合并同类项把不等式化成axb(a0)或axb(a0)的形式将未知数的系数化为1在方程两边同时除以未知数的系数a,得x或x【说明】解一元一次不等式的注意事项(1)去分母时,不等号两边各项都要乘各分母最小公倍数,不要
15、漏乘不带分母的项。(2)在步骤和中,如果乘数或除数是负数,要把不等号的方向改变。(3)在数轴上表示不等式的解集时,要注意不等号以及端点的情况。第5节 一元一次不等式与一次函数一、一元一次方程、一元一次不等式与一次函数之间的联系从“数”的角度看,求一元一次方程kxb0的解,相当于一次函数ykxb,当y0时,求自变量x的值;求一元一次不等式kxb0的解集,相当于一次函数ykxb,当y0时,求自变量x的取值围;求一元一次不等式kxb0的解集,相当于一次函数ykxb,当y0时,求自变量x的取值围。从“形”的角度看,求一元一次方程kxb0的解,相当于确定直线ykxb与x轴交点的横坐标;求一元一次不等式k
16、xb0的解集,相当于确定直线ykxb在x轴上方时的自变量x的取值围;求一元一次不等式kxb0的解集,相当于确定直线ykxb在x轴下方时的自变量x的取值围。二、利用图象法解一元一次不等式1、用图象法解不等式:2x33x72、归纳总结在同一直角坐标系画出一次函数y1k1xb1与y2k2xb2的图象,交点的横坐标就是一元一次方程的k1xb1k2xb2解;y1y2的部分所对应的自变量x的取值围就是一元一次不等式k1xb1k2xb2的解集;y1y2的部分所对应的自变量x的取值围就是一元一次不等式k1xb1k2xb2的解集。三、一元一次不等式的应用【例】我校打算在“五一”期间组织党员和教研组长到南戴河去旅
17、游,参加旅游的人数估计为1025人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元。经过协商,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折优惠。如果你是校长,你会选择哪一家旅行社呢?解:设此次参加旅游的人数是x人,选择甲旅行社时,所需费用为y1元,选择乙旅行社时,所需的费用为y2元,根据题意得y12000.75x,即y1150x y22000.8(x1),即y2160x160当y1y2时,150x160x160,解得x16;当y1y2时,150x160x160,解得x16;当y1y2时,150x160x160,解得x16。因为参加旅游的人数
18、为1025人,所以当x16时,甲乙两家旅行社的收费相同;当10x15时,选择乙旅行社;当17x25时,选择甲旅行社。第6节 一元一次不等式组一、一元一次不等式组一般地,关于同一未知数的几个一元一次不等式合在一起,组成一个一元一次不等式组。【说明】(1)不等式组中的所有的不等式必须都是一元一次不等式。 (2)不等式组中的所有的一元一次不等式都只含有同一个未知数。 (3)不等式组中的一元一次不等式的个数为两个或两个以上。二、一元一次不等式组的解集1、概念一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等组的解集。2、表示方法确定一个不等式组的解集的方法是先将几个不等式的解集在同一个
19、数轴上表示出来,然后再找出它们的公共部分。三、解不等式组1、概念求解不等式组解集的过程,叫做解不等式组。2、例题解:(1)解不等式,得x2 (2)解不等式,得x3 解不等式,得x2 解不等式,得x3 在同一条数轴上表示不等 在同一条数轴上表示不等式的解集为: 式的解集为: 所以,原不等式组的解集无解。 所以,原不等式组的解集为x3四、一元一次不等式组的应用【例】某高一新生中有若干住宿生,分若干间宿舍。若每间住4人,则有21人无处住;若每间住7人,则还有1间没住满。求住宿生的人数。解:设有宿舍x间,则住宿生人数为(4x21)人,根据题意得解这个不等式组,得7x因为房间数只能取正整数,所以x只能取
20、8或9当x8时,4x2153;当x9时,4x2157答:住宿生的人数为53人或57人。第三章 图形的平移与旋转第1节 图形的平移一、平移的相关概念1、平移的定义在平面,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。2、平移的条件(1)方向(任意方向) (2)距离3、平移的实质图形上的每一个点都沿着同一个方向移动了相同的距离。4、平移的性质平移改变了图形的位置,但不改变图形的形状和大小。这说明平移前后的两个图形是全等的,因此得到了如下性质:(1)平移前后的两个图形对应点所连的线段平行(或在同一条直线上)且相等。(2)平移前后的两个图形对应线段平行(或在同一条直线上)且相等。(3)平
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 年级 数学 知识点 归纳 总结 材料
链接地址:https://www.31ppt.com/p-4086257.html