2000考研数学三历真题及真题解析.doc
《2000考研数学三历真题及真题解析.doc》由会员分享,可在线阅读,更多相关《2000考研数学三历真题及真题解析.doc(104页珍藏版)》请在三一办公上搜索。
1、研究生入学考试2000到2013年数学三考试试题2000年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2001年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2002年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2003年考研数学(三)真题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设 其导函数在x=0处连续,则的取值范围是_.(2)已知曲线与x轴相切,则可以通过a表示为_.(3)设a0,而D表示全平面,则=_.(4)设n维向量;E为n阶单位矩阵,矩阵 , ,其中A的逆矩阵为B,则a=_.(5)设随机变量X 和Y的相关系数
2、为0.9, 若,则Y与Z的相关系数为_.(6)设总体X服从参数为2的指数分布,为来自总体X的简单随机样本,则当时,依概率收敛于_.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且存在,则函数(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. (2)设可微函数f(x,y)在点取得极小值,则下列结论正确的是 (A) 在处的导数等于零. (B)在处的导数大于零.(C) 在处的导数小于零. (D) 在处的导
3、数不存在. (3)设,则下列命题正确的是(A) 若条件收敛,则与都收敛.(B) 若绝对收敛,则与都收敛.(C) 若条件收敛,则与敛散性都不定.(D) 若绝对收敛,则与敛散性都不定. (4)设三阶矩阵,若A的伴随矩阵的秩为1,则必有(A) a=b或a+2b=0. (B) a=b或a+2b0.(C) ab且a+2b=0. (D) ab且a+2b0. (5)设均为n维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数,都有,则线性无关.(B) 若线性相关,则对于任意一组不全为零的数,都有(C) 线性无关的充分必要条件是此向量组的秩为s.(D) 线性无关的必要条件是其中任意两个向量线性无关.
4、(6)将一枚硬币独立地掷两次,引进事件:=掷第一次出现正面,=掷第二次出现正面,=正、反面各出现一次,=正面出现两次,则事件(A) 相互独立. (B) 相互独立. (C) 两两独立. (D) 两两独立. 三、(本题满分8分)设 试补充定义f(1)使得f(x)在上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足,又,求五、(本题满分8分)计算二重积分 其中积分区域D=六、(本题满分9分)求幂级数的和函数f(x)及其极值.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在内满足以下条件: ,且f(0)=0, (1) 求F(x)所满足的一阶微分方程;
5、(2) 求出F(x)的表达式.八、(本题满分8分)设函数f(x)在0,3上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在,使九、(本题满分13分)已知齐次线性方程组 其中 试讨论和b满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.十、(本题满分13分)设二次型,中二次型的矩阵A的特征值之和为1,特征值之积为-12.(1) 求a,b的值;(2) 利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.十一、(本题满分13分)设随机变量X的概率密度为 F(x)是X的分布函数. 求随机
6、变量Y=F(X)的分布函数.十二、(本题满分13分)设随机变量X与Y独立,其中X的概率分布为 ,而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u).2004年全国硕士研究生入学统一考试数学三试题一、填空题:本题共6小题,每小题4分,满分24分. 请将答案写在答题纸指定位置上.(1) 若,则_,_.(2) 函数由关系式确定,其中函数可微,且,则_.(3) 设 则_.(4) 二次型的秩为_.(5) 设随机变量服从参数为的指数分布,则_.(6) 设总体服从正态分布,总体服从正态分布,和分别是来自总体和的简单随机样本,则_.二、选择题:本题共8小题,每小题4分,满分24分. 在每小题给出
7、的四个选项中,只有一项符合题目要求,请把所选项前的字母填在答题纸指定位置上.(7) 函数在下列哪个区间内有界. (A) (B) (C) (D)(8) 设在内有定义,且, 则(A)必是的第一类间断点 (B)必是的第二类间断点(C)必是的连续点 (D)在点处的连续性与的值有关.(9) 设,则(A)是的极值点,但不是曲线的拐点(B)不是的极值点,但是曲线的拐点(C)是的极值点,且是曲线的拐点(D)不是的极值点,也不是曲线的拐点(10) 设有以下命题: 若收敛,则收敛 若收敛,则收敛 若,则发散 若收敛,则,都收敛则以上命题中正确的是(A) (B) (C) (D)(11) 设在上连续,且,则下列结论中
8、错误的是(A)至少存在一点,使得(B)至少存在一点,使得(C)至少存在一点,使得(D)至少存在一点,使得(12) 设n阶矩阵与等价,则必有(A)当时, (B)当时,(C)当时, (D)当时,(13) 设n阶矩阵的伴随矩阵,若是非齐次线性方程组的互不相等的解,则对应的齐次线性方程组的基础解系(A)不存在 (B)仅含一个非零解向量(C)含有两个线性无关的解向量 (D)含有三个线性无关的解向量(14) 设随机变量服从正态分布,对给定的,数满足,若,则等于(A) (B) (C) (D)三、解答题:本题共9小题,满分94分. 请将解答写在答题纸指定的位置上. 解答应写出文字说明、证明过程或演算步骤.(1
9、5)(本题满分8分)求.(16)(本题满分8分)求,其中是由圆和所围成的平面区域(如图). (17)(本题满分8分)设在上连续,且满足,证明:.(18)(本题满分9分)设某商品的需求函数为,其中价格,为需求量. ()求需求量对价格的弹性; ()推导(其中为收益),并用弹性说明价格在何范围内变化时,降低价格反而使收益增加.(19)(本题满分9分)设级数的和函数为.求:()所满足的一阶微分方程; ()的表达式.(20)(本题满分13分)设,. 试讨论当为何值时, ()不能由线性表示; ()可由唯一地线性表示,并求出表示式; ()可由线性表示,但表示式不唯一,并求出表示式.(21)(本题满分13分)
10、设n阶矩阵. ()求的特征值和特征向量; ()求可逆矩阵,使得为对角矩阵.(22)(本题满分13分)设为两个随机事件,且,令 求:()二维随机变量的概率分布; ()与的相关系数; ()的概率分布.(23)(本题满分13分)设随机变量的分布函数为其中参数. 设为来自总体的简单随机样本. ()当时,求未知参数的矩估计量; ()当时,求未知参数的最大似然估计量; ()当时,求未知参数的最大似然估计量.2005年全国硕士研究生入学统一考试数学三试题一、填空题:本题共6小题,每小题4分,满分24分. 请将答案写在答题纸指定位置上.(1) 极限_.(2) 微分方程满足初始条件的特解为_.(3) 设二元函数
11、,则_.(4) 设行向量组线性相关,且,则_.(5) 从数中任取一个数,记为,再从中任取一个数,记为,则_.(6) 设二维随机变量的概率分布为 0100.4a1b0.1 若随机事件与相互独立,则_,_.二、选择题:本题共8小题,每小题4分,满分24分. 在每小题给出的四个选项中,只有一项符合题目要求,请把所选项前的字母填在答题纸指定位置上.(7) 当取下列哪个值时,函数恰有两个不同的零点.(A)2 (B)4 (C)6 (D)8(8) 设,其中,则(A) (B) (C) (D)(9) 设若发散,收敛,则下列结论正确的是(A)收敛,发散 (B)收敛,发散(C)收敛 (D)收敛(10) 设,下列命题
12、中正确的是(A)是极大值,是极小值 (B)是极小值,是极大值(C)是极大值,也是极大值 (D)是极小值,也是极小值(11) 以下四个命题中,正确的是(A)若在内连续,则在内有界(B)若在内连续,则在内有界 (C)若在内有界,则在内有界 (D)若在内有界,则在内有界(12) 设矩阵满足,其中为的伴随矩阵,为的转置矩阵. 若为三个相等的正数,则为(A) (B)3 (C) (D)(13) 设是矩阵的两个不同的特征值,对应的特征向量分别为,则线性无关的充分必要条件是(A) (B) (C) (D)(14)(注:该题已经不在数三考纲范围内)三、解答题:本题共9小题,满分94分. 请将解答写在答题纸指定的位
13、置上. 解答应写出文字说明、证明过程或演算步骤.(15)(本题满分8分)求.(16)(本题满分8分)设具有二阶连续导数,且,求.(17)(本题满分9分)计算二重积分,其中.(18)(本题满分9分)求幂级数在区间内的和函数.(19)(本题满分8分)设在上的导数连续,且.证明:对任何,有(20)(本题满分13分)已知齐次线性方程组() 和 ()同解,求的值.(21)(本题满分13分)设为正定矩阵,其中分别为m阶,n阶对称矩阵,为阶矩阵. ()计算,其中; ()利用()的结果判断矩阵是否为正定矩阵,并证明你的结论.(22)(本题满分13分)设二维随机变量的概率密度为求:()的边缘概率密度; ()的概
14、率密度; ().(23)(本题满分13分)设为来自总体的简单随机样本,其样本均值为,记. ()求的方差; ()求与的协方差; ()若是的无偏估计量,求常数.2006年全国硕士研究生入学统一考试数学三试题一、填空题:16小题,每小题4分,共24分. 把答案填在题中横线上.(1) (2) 设函数在的某邻域内可导,且,则(3) 设函数可微,且,则在点(1,2)处的全微分(4) 设矩阵,为2阶单位矩阵,矩阵满足,则 .(5)设随机变量相互独立,且均服从区间上的均匀分布,则_.(6) 设总体的概率密度为为总体的简单随机样本,其样本方差为,则二、选择题:714小题,每小题4分,共32分. 每小题给出的四个
15、选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7) 设函数具有二阶导数,且,为自变量在点处的增量,分别为在点处对应的增量与微分,若,则()(A) . (B) .(C) . (D) . (8) 设函数在处连续,且,则()(A) 存在 (B) 存在(C) 存在 (D)存在 (9) 若级数收敛,则级数()(A) 收敛 . (B)收敛.(C) 收敛. (D) 收敛. (10) 设非齐次线性微分方程有两个不同的解为任意常数,则该方程的通解是()(A) . (B) . (C) . (D) (11) 设均为可微函数,且,已知是在约束条件下的一个极值点,下列选项正确的是()(A) 若,则.
16、 (B) 若,则. (C) 若,则. (D) 若,则. (12) 设均为维列向量,为矩阵,下列选项正确的是()(A) 若线性相关,则线性相关. (B) 若线性相关,则线性无关. (C) 若线性无关,则线性相关. (D) 若线性无关,则线性无关. (13) 设为3阶矩阵,将的第2行加到第1行得,再将的第1列的倍加到第2列得,记,则()(A) . (B) .(C) . (D) . (14) 设随机变量服从正态分布,随机变量服从正态分布,且则必有()(A) (B) (C) (D) 三、解答题:1523小题,共94分. 解答应写出文字说明、证明过程或演算步骤.(15)(本题满分7分) 设,求:();(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2000 考研 数学 三历真题 题解
链接地址:https://www.31ppt.com/p-4082587.html