量子力学中微扰理论的简单论述本科毕业论文设计.doc
《量子力学中微扰理论的简单论述本科毕业论文设计.doc》由会员分享,可在线阅读,更多相关《量子力学中微扰理论的简单论述本科毕业论文设计.doc(20页珍藏版)》请在三一办公上搜索。
1、量子力学中微扰理论的简单论述摘要:在量子力学中,由于体系的哈密顿函数算符往往比较复杂,薛定谔方程能够严格求解的情况寥寥可数。因此,引入各种近似方法以求解薛定谔方程的问题就什么重要。常用的近似方法有微扰法、变分法、半经典近似和绝热近似等,不同的近似方法有不同的实用范围,在下文中将讨论分立谱的微扰理论。对于体系的不含时的哈密顿函数的分立谱的的微扰理论可以分为非简并定态微扰理论和简并定态微扰理论。关键词:近似方法;非简并定态微扰理论;简并定态微扰理论目 录1 非简并定态微扰论11.1 理论简述11.2 一级微扰31.3 二级修正51.4 非简并定态微扰的讨论61.5 海曼费曼定理72 简并定态微扰论
2、82.1理论简述:82.2简并定态微扰论的讨论103 结束语11致谢11参考文献120 引言微扰理论是量子力学的重要的理论。对于中等复杂度的哈密顿量,很难找到其薛定谔方程的精确解。我们所知道的就只有几个量子模型有精确解,像氢原子、量子谐振子、与箱归一化粒子。这些量子模型都太过理想化,无法适当地描述大多数的量子系统。应用微扰理论,可以将这些理想的量子模型的精确解,用来生成一系列更复杂的量子系统的解答。量子力学的微扰理论引用一些数学的微扰理论的近似方法。当遇到比较复杂的量子系统时,这些方法试着将复杂的量子系统简单化或理想化,变成为有精确解的量子系统,再应用理想化的量子系统的精确解,来解析复杂的量子
3、系统。基本的方法是,从一个简单的量子系统开始,这简单的系统必须有精确解,在这简单系统的哈密顿量里,加上一个很弱的微扰,变成了较复杂系统的哈密顿量。假若这微扰不是很大,复杂系统的许多物理性质(例如,能级,量子态,波函数)可以表达为简单系统的物理性质加上一些修正。这样,从研究比较简单的量子系统所得到的知识,可以进而研究比较复杂的量子系统。微扰理论可以分为两类,不含时微扰理论与含时微扰理论。不含时微扰理论的微扰哈密顿量不含时间;而含时微扰理论的微扰哈密顿量含时间。1 非简并定态微扰论1.1 理论简述近似方法的精神是从已知的较简单的问题准确解出发,近似地求较复杂的一些问题的解,当然,还希望了解这些求解
4、方法的近似程度,估算出近似解和准确解之间的最大偏离。下面我们将讨论体系在受到外界与时间无关的微小扰动时,它的能级和波函数所发生的变化。1假设体系的哈密顿量不显含,定态的薛定谔方程满足下述条件: (1)可分解为和两部分厄米,而且远小于:上式表示,与的差别很小,可视为加与上的微扰。由于不显含,因此,无论或是均不显含。(2)的本征值和已经求出,即在的本征方程中,能级及波函数都是已知的。微扰论的任务就是从的本征值和本征函数出发,近似求出经过微扰后,的本征值和本征函数。(3)的能级无简并,严格来说,是要求通过微扰论来计算它的修正的那个能级无简并。例如,要通过微扰论计算对的第个能级的修正,就要求无简并,它
5、相应的波函数只有一个。其他能级既可以是简并的,也可以不是简并的。2(4)的能级组成分立谱,或者严格点说,至少必须要求通过微扰来计算它的修正的那个能级处于分立谱内,是束缚态。在满足上述条件下,可利用定态非简并微扰论从已知的的本征值和本征函数近似求出的本征值和本征函数。为表征微扰的近似程度,通常可引进一个小的参数,将写成,将的微小程度通过反映出来。体系经微扰后的薛定谔方程是:将能级和波函数按展开:,分别表示能级和波函数的一级,二级修正。将上两式代入薛定谔方程中得:然后比较上式两端的的同次幂,可得出各级近似下的方程式: : =: 零级近似显然是无微扰时的定态薛定谔方程式,同样还可以列出准确到,等各级
6、的近似方程式。31.2 一级微扰求一级微扰修正只需要求解=。由于厄米,的本征函数系系展开将此式代入的近似薛定谔方程中的 为求出展开系数,以左乘上式并对全空间积分,利用系的正交归一性后,得 当时,得当时,得那么接下来计算,利用的归一条件,在准确到数量级后,又因波函数归一,得:将代入上式得必为纯虚数,即为实数。准确到的一级近似,微扰后体系的波函数是上式表明,的贡献无非是使波函数增加了一个无关紧要的常数相位因子,那么,不失普遍性,可取因此,准确到一级近似,体系的能级和波函数是上式表明,准确到一级近似,在无微扰能量表象中的对角元给出能量的一级修正,非对角元给出波函数的一级修正。41.3 二级修正求二级
7、修正需要求解=与求一级修正的步骤相似,将二级修正波函数按展开将此式代入上式得:以左乘上式,并对全空间进行积分后得:当时,得,考虑到0,由上式得:当时,由上式得:、至于,同样可以由波函数的归一条件算出,由得或同样,若取为实数,那么由上式得:综合上述,准确到二级近似吗,体系的能级和波函数是:同理,其他各级近似也可用类似的方法算出。51.4 非简并定态微扰的讨论(1)由微扰后的能级可知,微扰实用的条件是只有满足该式,才能满足微扰级数的收敛性,保证微扰级数中最后一项小于前一项。这就是的明确表示,微扰方法能否应用,不仅决定于微扰的大小,而且决定于微扰的大小,而且还决定于无微扰体系两个能级之间的间距。只有
8、当微扰算符在两个无微扰体系波函数之间的矩阵元的绝对值远小于五微扰体系相应的两能级间隔时,才能用微扰论来计算。这就是为什么必须要求作微扰计算的能级处于分立谱,因为如果能级是连续谱,它和相邻的能级的能级间距趋于零,对于除能外的其他所有能级, 是不可能都被满足的。6(2)如何在中划分和十分重要,和取得好,上式不仅可以满足,而且可以使级数收敛的很快,避免了繁长的微扰计算。一般,除了要求的本征值和本征函数必须已知外,还可以从体系的对称性及微扰矩阵元是否满足一定的选择定则来考虑划分和。(3)能量本征函数和本征值的二级修正由相应的一级修正给出,这样我们可以说,微扰论其实也是一种逐步逼近法。(4)关于的讨论:
9、由得出,若设我们将看成一个可变化的参数,则显然当0时,这时体系未受到微扰的影响;当1时,微扰全部加进去了。因此、可以想象体系当从0缓慢变化到1的过程,也就是体系从无微扰的状态逐步变成有微扰的状态的过程。71.5海曼费曼定理设是的函数,因此他的本征方程和归一条件为:由上式得:上式就是费曼海曼定理,它通过对微扰参数的积分给出了含微扰的能量和无微扰能量之差。2 简并定态微扰论2.1 理论简述:除一维束缚态外,一般情况下均有简并,因此简并微扰比非简并微扰更具有普遍性,可以说,简并微扰是非简并微扰的特例。假定的第个能级有度简并,即对应于有个本征函数(=1,2,3. )。与简并微扰不同,现在由于不知道在这
10、个本征函数中应该取哪一个作为无微扰本征函数。因此,简并微扰要解决的第一个问题就是:如何适当选择零级波函数进行微扰计算。设的本征方程是:归一化条件是:的本征方程是:由于是完备系,将按展开后,得:将此式代入上式得:以左乘上式两端,对全空间进行积分后有:其中:按微扰的精神,将的本征值和在表象中的本征函数按的幂级数作微扰展开:再将这两式代入 后得:比较上式给出的两端的同次幂,给出:如果讨论的能级是第个能级,即,由的0次幂方程式得:即:是个待定的常数。再由一级近似下的薛定谔方程得:在上式中,当,得能级的一级修正为:为方便书写起见,略去指标,记同一能级中,不同简并态,之间的矩阵元为。因此,上式可改写为:上
11、式是一个以系数为未知数的线性齐次方程组,它有非零解的条件是其系数行列式为零,即:这是个次的久期方程。由这个久期方程可以解出的个根(a=1,2,3)将这个根分别代入上个齐次线性方程组式后,可得出相应的组解(a=1,2,3),将它们代入后,得出与相应的零级波函数的系数。从而给出零级波函数和能量本征值的一级修正。它们分别是:那么,由上式可知,新的零级波函数实际上是原来相应于第个能级的各个简并本征函数的线性组合,其组合系数由久期方程决定。一般地,如果久期方程无重根,将求得的代入:原则上可以求出组不同的解,那么可以求出个零级近似的波函数。82.2 简并定态微扰论的讨论(1) 简并来自对守恒量的不完全测量
12、。每一个守恒量对应于一种对称性。若由这个次的久期方程解出的(a=1,2,3)无重根,那么,无微扰能级经微扰后分裂为条,它们的波函数由各自对应的(a=1,2,3)表示。这时,简并将完全消除,原来带来简并的对称性或守恒量将发生或缺。同理,若有重根,只要不是重根,都将部分地消除简并,引起部分对称或缺。9(2) 经过重新组合后的零级波函数(a=1,2,3)彼此互相正交,满足 。(3) 在属于的维子空间中,若经过非简并微扰方法重新组合后的(a=1,2,3)为基矢,则有:由上式可知,在经过非简并微扰方法处理后的简并态构成的子空间中,对应对角矩阵。因此,简并微扰方法的主要精神在于:重新组合简并态的零级波函数
13、,使得在简并态子空间中对角化。在经过这样的处理后,能量的一级修正,与非简并微扰的公式完全相同。简并微扰的核心问题在于对简并子空间的基底的选择,在于重新选择零级波函数以使得在简并子空间对角化,则对角线上的元素就是能量的本征值。若最初的零级的简并波函数本身就能使得对角化,即则,由:将得出。无须再去重新组合零级波函数。简并微扰可类似于非简并微扰的方法处理。103 结束语在量子力学中,由于体系的哈密顿函数比较复杂,往往不能求得准确的解,而只能求得近似解。因此用来求问题的近似解的方法,就显得很重要。那么,在上文,我们分别讨论了非简并定态微扰论和简并定态微扰论,并简单论述了它的理论推导。由此,我们可以得知
14、,近似方法的精神就是从简单问题的精确解出发来求比较复杂的问题的近似解。近似方法除了上文介绍的非简并定态微扰理论和简并定态微扰理论外,还有含时微扰理论和变分法等等。致谢本设计在老师的悉心指导和严格要求下已完成,从课题选择、方案论证到具体设计和调试,无不凝聚着孙老师的心血和汗水,在四年的本科学习和生活期间,也始终感受着导师的精心指导和无私的关怀,我受益匪浅。在此向孙祝老师表示深深的感谢和崇高的敬意。在论文的写作过程中,得到了许多同学的宝贵意见,同时也得到了许多学长、学姐的支持和帮助,在此一并致于诚挚的谢意。感谢学姐和学长在理论和实践上给予我的帮助,感谢老师在探究方面给与我许多指导和帮助。不积跬步何
15、以至千里,我的毕业论文设计之所以能够顺利完成,归功于各位任课老师对学生认真的讲授课程,才使我能较好的掌握和运用物理学的专业知识,并且在毕业论文设计中得到体现。正是有了他们的细心帮助和大力支持,才使我的毕业论文设计工作顺利完成,在此向山西大同大学,物理系的全体老师表示由衷的谢意。感谢他们四年来的辛勤栽培。参考文献 苏如铿量子力学高等教育出版社2002.122 周世勋量子力学教程高等教育出版社2009.063 曾谨言量子力学卷(2)第4版科学出版社2007.084 钱伯初量子力学高等教育出版社2006.015 Gennaro Auletta,Fountations and Interpretati
16、on of Quantum Mechanics,World Scientific Publishing Co.Pte.Ltd,2000.6 刘觉平 普通高等教育十一五国家级规划教材:量子力学高等教育出版社2012.087 张永德. 量子力学.科学出版社(普通高等教育“十五”国家级规划教材).2002.068 曾谨言. 量子力学导论. 北京大学出版社出版.1992.069 钱伯初,曾谨言. 量子力学习题精选与剖析. 科学出版社出版,1999年第二版。10 J. W. S. Rayleigh,Theory of Sound, 2nd edition Vol. I, pp 115-118, Macm
17、illan, London (1894)A simple discussion of perturbationtheory in quantum mechanicsAbstract:In quantum mechanics, because the systems Hamiltonian operatorare is complicated, the situation that Schrodingers equation can be solved isexactly few. Therefore, the introduction of various.approximation meth
18、ods for solving Schrodinger equation problem is something important. Approximate methods commonly are perturbation method, variational method, the semiclassical approximation and the adiabatic approximation and so on. Different approximation methods have different application scope, we willdiscuss t
19、he perturbation theory of discrete spectrum below. For Hamiltonian system of not containing time of discrete spectral of perturbation theory and degenerate stationary perturbation theory.Key Words:non degenerate stationary perturbation theory 、 degenerate stationary perturbation theory. MuWFA5uxGjqv
20、$UE9wEwZ#QcUE%&qYpEh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z89AmYWpazadNu#KN&MuWFA5uxY7JnD6YWRrWwcvR9CpbK!zn%Mz849GxGjqv$UE9wEwZ#QcUE%&qYpEh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z89AmUE9aQGn8xp$R#͑GxGjqv$UE9wEwZ#QcUE%&qYpEh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z89AmYWpazadNu#KN&MuWFA5uxY
21、7JnD6YWRrWwcvR9CpbK!zn%Mz849GxGjqv$UE9wEwZ#QcUE%&qYpEh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z89AmYWpazadNu#KN&MuWFA5uxGjqv$UE9wEwZ#QcUE%&qYpEh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z89AmYWpazadNu#KN&MuWFA5uxY7JnD6YWRrWwcvR9CpbK!zn%Mz849GxGjqv$UE9wEwZ#QcUE%&qYpEh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv
22、*3tnGK8!z8vG#tYM*Jg&6a*CZ7H$dq8KqqfHVZFedswSyXTy#&QA9wkxFyeQ!djs#XuyUP2kNXpRWXmA&UE9aQGn8xp$R#͑GxGjqv$UE9wEwZ#QcUE%&qYpEh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z89AmYWpazadNu#KN&MuWFA5uxY7JnD6YWRrWwcvR9CpbK!zn%Mz849GxG89AmUE9aQGn8xp$R#͑GxGjqv$UE9wEwZ#QcUE%&qYpEh5pDx2zVkum&gTXRm6X4NGpP$vSTT
23、#&ksv*3tnGK8!z89AmYWpazadNu#KN&MuWFA5uxY7JnD6YWRrWwcvR9CpbK!zn%Mz849GxGjqv$UE9wEwZ#QcUE%&qYpEh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z89AmYWpazadNu#KN&MuWFA5uxGjqv$UE9wEwZ#QcUE%&qYpEh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z89AmYWpazadNu#KN&MuWFA5uxY7JnD6YWRrWwcvR9CpbK!zn%Mz849GxGjqv$UE9wEwZ#QcUE
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 量子力学 中微扰 理论 简单 论述 本科毕业 论文 设计
链接地址:https://www.31ppt.com/p-4069484.html