《高中物理竞赛辅导2.3.1 基本磁现象.doc》由会员分享,可在线阅读,更多相关《高中物理竞赛辅导2.3.1 基本磁现象.doc(20页珍藏版)》请在三一办公上搜索。
1、 3。1 基本磁现象由于自然界中有磁石()存在,人类很早以前就开始了对磁现象的研究。 人们把磁石能吸引铁钴镍等物质的性质称为磁性。 条形磁铁或磁针总是两端吸引铁屑的能力最强,我们把这吸引铁屑能力最强的区域称之为磁极。 将一条形磁铁悬挂起来,则两极总是分别指向南北方向,指北的一端称北极(N表示);指南的一端称南极(S表示)。 磁极之间有相互作用力,同性磁极互相排斥,异性磁极互相吸引。 磁针静止时沿南北方向取向说明地球是一个大磁体,它的N极位于地理南极附近,S极位于地理北极附近。 1820年,丹麦科学家奥斯特发现了电流的磁效应。 第一个揭示了磁与电存在着联系。 长直通电导线能给磁针作用;通电长直螺
2、线管与条形磁铁作用时就如同条形磁铁一般;两根平行通电直导线之间的相互作用,所有这些都启发我们一个问题:磁铁和电流是否在本源上一致? 1822年,法国科学家安培提出了组成磁铁的最小单元就是环形电流,这些分子环流定向排列,在宏观上就会显示出N、S极的分子环流假说。近代物理指出,正是电子的围绕原子核运动以及它本身的自旋运动形成了“分子电流”,这就是物质磁性的基本来源。 一切磁现象的根源是电流,以下我们只研究电流的磁现象。3。2 磁感应强度321、磁感应强度、毕奥萨伐尔定律将一个长L,I的电流元放在磁场中某一点,电流元受到的作用力为F。 当电流元在某一方位时,这个力最大,这个最大的力和IL的比值,叫做
3、该点的磁感应强度。 将一个能自由转动的小磁针放在该点,小磁针静止时N极所指的方向,被规定为该点磁感应强度的方向。 真空中,当产生磁场的载流回路确定后,那空间的磁场就确定了,空间各点的也就确定了。 根据载流回路而求出空间各点的要运用一个称为毕奥萨伐尔定律的实验定律。毕萨定律告诉我们:一个电流元IL(如图3-2-1)在相对电流元的位置矢量为的P点所产生的磁场的磁感强度大小为,为顺着电流IL的方向与方向的夹角,的方向可用右手螺旋法则确定,即伸出右手,先把四指放在IL的方向上,顺着小于的角转向方向时大拇指方向即为的方向。式中K为一常数,K=韦伯/安培米。载流回路是由许多个IL组成的,求出每个IL在P点
4、的后矢量求和,就得到了整个载流回路在P点的。P图3-2-1如果令,特斯拉米安,那么又可写为称为真空的磁导率。下面我们运用毕萨定律,来求一个半径为R,载电流为I的圆电流轴线上,距圆心O为的一点的磁感应强度。OIRP图3-2-2在圆环上选一I,它在P点产生的磁感应强度,其方向垂直于I和所确定的平面,将分解到沿OP方向和垂直于OP方向,环上所有电流元在P点产生的的和为零,B=( 线性一元叠加)在圆心处,322、 由毕萨定律可以求出的几个载流回路产生的磁场的磁感应强度(1)无限长载流直导线为了形象直观地描述磁场,引进了与电感线相似的磁感线。I图3-2-3长直通电导线周围的磁感线如图3-2-3所示。如果
5、导线中通过的电流强度为I,在理论上和实验中都可证明,在真空中离导线距离为r处的磁感强度 或 式中称为真空中的磁导率,大小为。(2)无限长圆柱体无限长载流直导线 r为所求点到直导线的垂直距离。半径为R,均匀载有电流,其电流密度为j的无限长圆柱体当rR,即圆柱体内 当rR,即圆柱体外 (3)长直通电螺线管内磁场图3-2-4长直导电螺线管内磁场如图图3-2-4所示可认为是匀强磁场,场强大小可近似用无限长螺线管内B的大小表示n为螺线管单位长度的匝数(4)螺绕环的磁场与长直通电螺线管内磁场的磁场相同。I(a)I(b)图3-2-5323、磁感应线和磁通量为了形象地描绘磁场的分布,在磁场中引入磁感应线,亦即
6、磁力线。磁力线应满足以下两点:第一,磁感应线上任一点的切线方向为该点磁感应强度的方向;第二,通过垂直于的单位面积上的磁感应线的条数应等于该处磁感应强度的大小。图3-2-5的(a)和(b)分别给出了无限长载流导线和圆电流的磁场的磁力线。从图中可看到:磁力线是无头无尾的闭合线,与闭合电路互相套合。磁感线是一簇闭合曲线,而静电场的电感线是一簇不闭合的曲线(或者是从正电荷到负电荷,或者是从正电荷到无穷远处,从无穷远处到负电荷)。这是一个十分重要的区别,凡是感线为闭合曲线的场都不可能是保守场。PI2I图3-2-6磁感强度是一个矢量,如果两个电流都对某处的磁场有贡献,就要用矢量合成的方法。如果有a、b两根
7、长直通电导线垂直于纸面相距r放置,电流的大小,(图3-2-6)那么哪些位置的磁感强度为零呢?在a、b连线以外的位置上,两根导线上电流所产生的磁感强度和的方向都不在一直线 上,不可能互相抵消;在a、b连线上,a左边或b右边的位置上,和的方向是相同的,也不可能互相抵消;因此只有在a、b中间的连线上,和才有可能互相抵消,设离a距离为的P处合磁感应强度为零(图3-2-6)(矢量式)=,(a) (b) 图2-3-7通过一给定曲面的总磁力线数称为通过该曲面的磁通量,磁通量的单位是韦伯,1韦伯=1特斯拉1米。图3-2-7(a)中,通过匀磁场中与磁力线垂直的平面的磁通量为;而通过与磁力线斜交的S面的磁通量为:
8、(角即是两个平面S和S的夹角,也是S面的法线与的夹角)。而在(b)中,磁场和曲面都是任意的,要求出通过S面的磁通量应把通过S面上每一小面元的磁通量求出后求和,即:324、磁场中的高斯定理考虑到磁力线是无头无尾的封闭曲线,对磁场中任一封闭曲面来说,有多少根磁力线穿入,必有多少根穿出,即通过磁场中任一封闭曲面的磁通量为零。这就是磁场的高斯定理,它表明了磁场一个重要性质,即磁场是无源场,自然界中没有单独的N极或S极存在。325、典型例题图3-2-8例1:图3-2-8所示,两互相靠近且垂直的长直导线,分别通有电流强度和的电流,试确定磁场为零的区域。分析:建立图示直角坐标系,用安培定则判断出两电流形成的
9、磁场方向后,可以看出在、两象限内,两磁场方向相反,因此合磁场为零区域只能出现在这两个象限内。解:设P(x、y)点合磁感强度为零,即有得 这就是过原点的直线方程,其斜率为I/I。AIBIO图3-2-9例2:如图3-2-9所示,将均匀细导线做成的圆环上任意两点A和B与固定电源连接起来,计算由环上电流引起的环中心的磁感强度。分析:磁感强度B可以看成圆环上各部分(将圆环视为多个很小长度部分的累加)的贡献之和,因为对称性,圆环上各部分电流在圆心处磁场是相同或相反,可简化为代数加减。ABRI1I2图3-2-10解:设A、B两点之间电压为U,导线单位长度电阻,如图3-2-10所示,则二段圆环电流 磁感强度B
10、可以是圆环每小段部分磁场的叠加,在圆心处,可表达为,所以:因 故,即两部分在圆心处产生磁场的磁感强度大小相等,但磁场的方向正好相反,因此环心处的磁感强度等于零。5、2 交流电路521、交流电路(1)纯电阻电路 图5-2-1给电阻R加上一正弦交流电,如图5-2-1所示,其电压u为电流的瞬时值I与U、R三者关系仍遵循欧姆定律。 图5-2-2电流最大值,它们的有效值同样也满足在纯电阻电路中,u、i变化步调是一致的,即它们是同相,图5-2-2甲表示电流、电压随时间变化的步调一致特性。图乙是用旋转矢量法来表示纯电阻电路电流与电压相位关系。 (2)纯电感电路图5-2-3纯电感电路如图2-1-3所示,自感线
11、圈中产生自感电动势为,电路中电阻R可近似为零,由含源电路欧姆定律有,所以,自感电动势与外加电压是反相的。 设电路中电流,自感电动势为由于很短,依三角关系展开上式后,近似处理,则为由得由上面可见:图5-2-4a.纯电感电路中电压电流关系: ,其中称为感抗()满足,其中,单位:欧姆。b.纯电感电路中,图5-2-4电压、电流相位关系是,电压超前电流 ,它们的图像和矢量表示如图5-2-5的甲、乙图所示。 图5-2-6图5-2-5(3)纯电容电路纯电容电路如图5-2-6所示,外加电压u,电容器反复进行充放电,设所加交变电压,与前面推导方式相同, 时间很短,得到则电路中电流有效值为I 图5-2-7称为电容
12、的容抗,单位是欧姆。在纯电容电路中电流与电压的相位关系是:电流超前电压,图5-2-6甲、乙分别反应电流、电压随时间的变化图线和它们的矢量表示图。522位移电流位移电流不是电荷定向移动的电流。它引起的变化电场,极置于一种电流。为了形象地表明我移电流,可以把它看作是由极板上电荷积累过程即形成的。交流电能通过电容器,是由于电容器在充、放电的过程中,电容器极板上的电荷发生变化,引起电场的变化而形成的。连接电容器的导线中有传导电流通过,而在电容器内存在位移电流。我移电流在产生磁场效应上和传导电流完全等效,因为二者都都会在周围的空间产生磁场。我移电流通过介质时不会产生热效应。523、交流电路中的欧姆定律在
13、交流电路中,电压、电流的峰值或有效值之间关系和直流电路中的欧姆定律相似,其等式为或,式中I、U都是交流电的有效值,Z为阻抗,该式就是交流电路中的欧姆定律。图5-2-8(2)说明由于电压和电流随元件不同而具有相位差,所以电压和电流的有效值之间一般不是简单数量的比例关系。a、在串联电路中,如图图5-2-8所示,以R、L、C为例,总电压不等于各段分电压的和,。因为电感两端电压相位超前电流相位电容两典雅电压相位落后电流相位。所以R、L、C上的总电压,决不是各个元件上的电压的代数和而是矢量和。以纯电阻而言, 以纯电感而言, 以纯电容而言,图5-2-9图5-2-10 合成的总电压。则,得。而电压和电流的相
14、位差(图5-2-9)。b、在并联电路中,如图5-2-10所示,以R、L、C为例,每个元件两端的瞬时电压都相等为U。每分路的电流和两端电压之间关系为 , , 。不同元件上电流的相位也各有差异。纯电感上电流相位落后于纯电阻电流相位,纯电容上电流相位超前纯电阻电流相位。所以分电流的矢量和即总电流 令 得。524、交流电功率在交流电中电流、电压队随时间而变,因此电流和电压的乘积所表示的功率也将随时间而变。跟交流电功率有关的概念有:瞬时功率、有功功率、视在功率(又叫做总功率)、无功功率、以及功率因素。a瞬时功率。由瞬时电流和电压的乘积所表示的功率。,它随时间而变。在任意电路中,与u之间存在相位差。在纯电
15、阻电路中,电流和电压之间无相位差,即,瞬时功率。b有功功率。用电设备平均每单位时间内所用的能量,或在一个周期内所用能量和时间的比。在纯电阻电路中,纯电阻电路中有功功率和直流电路中的功率计算方法表示完全一致,电压和电流都用有效值来计算。在纯电感电路中(电压超前电流),在纯电容电路中(电流超前电压), 以上说明电感电路或电容电路中能量只能在电路中互换,即电容与电源、电感与电源之间交换能量,对外无能量交换,所以它们的有功功率为零。对于一般电路的平均功率 c视在功率(S)。在交流电路中,电流和电压有效值的乘积叫做视在功率,即。它可用来表示用电器(发电机或变压器)本身所容许的最大功率(即容量)。图5-2
16、-11d无功功率(Q)。在交流电路中,电流、电压的有效值与它们的相位差的正弦的乘积叫做无功功率,即。它和电路中实际消耗的功率无关,而只表示电容元件、电感元件和电源之间的能量交换的规模。有功功率,无功功率和视在功率之间的关系,可用如图3-1-74所示的所谓功率三角形来表示。e功率因数。发电机输送给负载的有功功率和视在功率的比, 。为了提高电能的可利用程度,必须提高功率因数,或者说减小相位差。525、涡流(1)定义或解释块状金属放在变化的磁场中,或让它在磁场中运动,金属地内有感应电场产生,从而形成闭合回路,这时在金属内所产生的感生电流自成闭合回路,形成旋涡,所以叫做涡电流。“涡电流”简称涡流,又叫
17、傅科电流。(2)说明涡流的大小和磁通量变化率成正比,磁场变化的频率越高,导体里的涡流也越大。在导体中涡流的大小和电阻有关,电阻越大涡流越小。为了减小涡流造成的热损耗,电机和变压器的铁芯常采用多层彼此绝缘的硅钢片迭加而成(材料采用硅钢以增加电阻)。涡流也有可利用的一面。高频感应炉就是利用涡流作为自身加热用,感应加热,温度控制方便,热效率高,加热速度快,在生产生已用作金属的冶炼。在生活上也已被用来加热食品。涡流在仪表上也得到运用。如电磁阻尼,在磁电式测量仪表中,常把使指针偏转的线圈绕在闭合铝框上,当测量电流流过线圈时,铝框随线圈指针一起在磁场中转动,这时铝框内产生的涡流将受到磁场作用力,抑止指针的
18、摆动,使指针较快地稳定在指示位置上。526、自感由于导体本身电流发生变化而产生电磁感应现象员做自感现象。导体回路由于自感现象产生的感生电动势叫做自感电动势,自感电动势的大小和电流的变化率成正比,。这是由于电流变化引起了回来中磁通量变化的缘故。式中比例常数L叫做自感系数。(2)单位在国际单位制中,自感系数的单位是亨利。(3)说明自感是导体本身阻碍电流变化的一制属性。对于一个线圈来说,自感系数的大小取决于线圈的匝数,直径、长度以及曲线芯材料等性质。在线圈直径远较线圈长度为小时,则(是圈线芯材料的导磁率,是线圈长度,N是线圈匝数,S是线圈横截面积)。自感现象产生的原因是当线圈中电流发生变化时,该线圈
19、中将引起磁通量变化,从而产生感生电动势。因此,自感电动势的方向也可由楞次定律确定。当电流减小时,穿过线圈的磁通量也将减小,这时自感电动势的方向应和正在减小的电流方向一致,以障碍原电流的减小。同理,当线圈中电流增大时,则穿过线圈的磁通量也随着增大,因而有时将导体的自感现象与惯性现象作类比,它们都表现为对运动状态变化的障碍,所以自感现象又叫做电磁惯性现象。自感系数又叫做电磁惯量。这也可在能量关系上作一类比,电场能的公式为,那储藏在磁场里的能量公式为,因而L与C(电容)相当,I与U(电压)相当,自感系数L又可叫做电磁容量。但须注意,在线圈中被自感而产生电动势所障碍的是电流的变化,而不是阻碍电流本身。
20、所以线圈中电流变化率越大则线圈两端阻碍电流变化的感生电动势值也越大。与电流的大小无直接关系。自感现象也可从能量守恒观点来解释。在自感电路里,接通直流电源,电流逐渐增加,在线圈内穿过的磁通量也逐渐增大,建立起磁场。在电流达到最大值前电源供给的能量将分成两部分,一部分消耗在线路的电阻上转变为热能;另一部分克服自感电动势做功,转化为磁场能。如果线路上热能损耗很小,可以忽略不计,那么在电流达到最大值前,电源供应的能量将全部转化为磁场能。当电流达到最大值时,磁场能也达到最大。当电流达到最大值稳定时,自感电动势不再存在,电源不再供给电能。自感系数不仅和线圈的几何形状以及密绕程度有关,而且还和线圈中放置铁芯
21、或磁芯的性质有关,如果空心线圈的自感系数为,放置磁芯后,线圈的自感系数将增大倍,即,式中为磁芯的有效导磁率,它和磁芯材料的的相对导磁率有内在的联系。闭合的环形磁芯和数值相等。它们还和导体中工作电流的大小有关。和也有所区别。至于的大小还与磁芯材料的粗细、长短等几何形状有关,例如,对棒形铁芯或包含有空气隙的环形磁芯来说,。用的锰锌铁氧体材料制作的天线磁棒,其常常不到10。527、互感由于电路中电流的变化,而引起邻近另一电路中产生感电动势的现象叫做互感现象。导体由于互感现象,在次级线圈中产生感生电动势。感生电动势的大小和初级线圈中电流的变化率成正比,。式中的比例常数叫做互感系数。(2)单位在国际单位
22、制中,互感系数的单位是亨利。(3)说明互感系数的大小和初、次级线圈的自感系数有关。当两个自感系数分别为L1和L2的线圈有闭合铁芯相连,而且初、次级线圈又耦合得十分紧密的情况下,即可看作是一种理想耦合。在理想耦合时互感系数。在一般情况下,两线圈之间不一定有铁芯相连,它们之间的磁耦合并不很紧密,其中某线圈中电流所激发的磁通量不全部通过另一线圈时,那么,k为耦合系数,它的物理意义是表示为磁耦紧密程度。K值和两线圈或回路的相对位置以及和周围的介质材料有关。对于k值的选取,由实际需要而定。如果要减小互感干扰,则选取较小的耦合系数;如果要加强互感,则选取较大的耦合系数。528、三相交流电三相交流电发电机原
23、理如图5-2-1所示,其中AX、BY、CZ三组完全相同的线圈,它们排列在圆周上位置彼此差120。角度,当磁铁以角速度匀速转动时,每个线圈中都会产生一个交变电动势,它们位相彼此为,因而有图5-2-8图5-2-9(1)星形(Y型)连接的三相交流电源如图5-2-8所示,三相中每个线圈的头A、B、C分别引出三条线,称为端线(火线),而每相线圈尾X、Y、Z连接在一起,引出一条线,此线称为中线。因为总共接出四根导线,所以连接后的电源称为三相四线制。三相电源中,每相线圈中电流为相电流,端线中的电流为相电流,端线中的电流为线电流,每个线圈中电压为相电压,任意两条端线的电压为线电压。则线电压与相电压关系 所以相对有效值而言,有同理有:而星形连接后,相电流与线电流大小是一样的,即:(2)三角形(形)连接的三相电源如图5-2-9所示,它构成三相三线制电路。由图可知,在此情形下线电压等于相电压,但线电流与相电流是不相等的,若连接负载在对称平衡条件下,图5-2-10所以有:(3)三相交流电负载的星形和三角形连接如图5-2-10甲、乙所示,星形连接时,有,电流关系:若三相负载平衡。即,则有:,中线可省去,改为三相三线制。三相负载的三角形连接时,而负载上电流与线电流不等,当三相平衡时,线电流是相电流的倍。
链接地址:https://www.31ppt.com/p-4063744.html