高中数学竞赛专题讲座2 集合与容斥原理.doc
《高中数学竞赛专题讲座2 集合与容斥原理.doc》由会员分享,可在线阅读,更多相关《高中数学竞赛专题讲座2 集合与容斥原理.doc(8页珍藏版)》请在三一办公上搜索。
1、容斥原理与抽屉原理一、基础知识 (一)有限集合所含元素个数的几个简单性质(容斥原理) 设表示集合所含元素的个数,(1), 当时, 推广到个集合的情况,(2)变形:逐步淘汰原理(筛法公式)设S是有限集,(),在S中的补集为(),则+(三)集合的划分:若,且,则这些子集的全集叫I的一个-划分。相对补集:称属于A而不属于B的全体元素,组成的集合为B对A的相对补集或差集,记作A-B。 (四)计数原理定理1 分类计数原理(加法原理):做一件事有类办法,第一类办法中有种不同的方法,第二类办法中有种不同的方法,第类办法中有种不同的方法,那么完成这件事一共有种不同的方法。定理2 分步计数原理(乘法原理):做一
2、件事分个步骤,第一步有种不同的方法,第二步有种不同的方法,第步有种不同的方法,那么完成这件事一共有种不同的方法。应用举例例1、某班对数学、物理、化学三科总评成绩统计如下:优秀的人数:数学21个,物理19个,化学20个,数学物理都优秀9人,物理化学都优秀7人。化学数学都优秀8人。这个班有5人任何一科都不优秀。那么确定这个班人数以及仅有一科优秀的三科分别有多少个人。分析:自然地设A=数学总评优秀的人 B=物理总评优秀的人 C=化学总评优秀的人则已知|A|=21 |B|=19 |C|=20这表明全班人数在41至48人之间。仅数学优秀的人数是可见仅数学优秀的人数在4至11人之间。同理仅物理优秀的人数在
3、3至10人之间。同理仅化学优秀的人数在5至12人之间。例2、集合A,B是I=1,2,3,4,5,6,7,8,9,0的子集,若,求有序集合对(A,B)的个数;分析:集合I可划分为三个不相交的子集;AB,BA,中的每个元素恰属于其中一个子集,10个元素共有310种可能,每一种可能确定一个满足条件的集合对,所以集合对有310个。例3、 求1,2,3,100中不能被2,3,5整除的数的个数。分析:记,由容斥原理,所以不能被2,3,5整除的数有个。例4、设A1,2,3,n,对XA,设X中各元素之和为Nx,求Nx的总和.分析已知的所有的子集共有个.而对于,显然中包含的子集与集合的子集个数相等.这就说明在集
4、合的所有子集中一共出现次,即对所有的求和,可得【解】集合的所有子集的元素之和为=说明本题的关键在于得出中包含的子集与集合的子集个数相等.这种一一对应的方法在集合问题以及以后的组合总是中应用非常广泛.例5、给定集合的个子集:,满足任何两个子集的交集非空,并且再添加I的任何一个其他子集后将不再具有该性质,求的值。分析:将I的子集作如下配对:每个子集和它的补集为一对,共得对,每一对不能同在这个子集中,因此,;其次,每一对中必有一个在这个子集中出现,否则,若有一对子集未出现,设为C1A与A,并设,则,从而可以在个子集中再添加,与已知矛盾,所以。综上,。例6、1992位科学家,每人至少与1329人合作过
5、,那么,其中一定有四位数学家两两合作过。分析:在与一个人A合作的人中我们找到B。再说明一定有人与A和B都合作过为C。最后再说明有人与A、B、C都合作过为D,那么A、B、C、D就是找的人了。 证明:一个人A。不妨设B与之合作。那么。即C与A和B均合作过,分别表示与A、B合作过的人的集合。同样地,。所以存在。则A、B、C、D就是所求,证毕。说明:把一个普通的叙述性问题转化为集合的语言描述的问题通常为解题的关键之处,也是同学们需加强的。(五)抽屉原理 在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”
6、;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”。这类存在性问题中,“存在”的含义是“至少有一个”。在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。这类问题相对来说涉及到的运算较少,依据的理论也不复杂,这些理论称为“抽屉原理”。 抽屉原则有时也被称为鸽巢原理,它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原则。它是组合数学中一个重要的原理。把它推广到一般情形有以下几种表现形式。(一)抽屉原理的基本形式 定理1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,
7、其中至少有两个元素。 证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。 例1、 已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。证明:至少有两个点之间的距离不大于. 如果把条件(包括边界)去掉,则结论可以修改为:至少有两个点之间的距离小于 .分析:5个点的分布是任意的。如果要证明“在边长为1的等边三角形内(包括边界)有5个点,那么这5个点中一定有距离不大于的两点”,则顺次连接三角形三边中点,即三角形的三条中位线,可以分原等边三角形为4个全等的边长为的小等边三角形,则5个点中必有2点位于同一个
8、小等边三角形中(包括边界),其距离便不大于。 以上结论要由定理“三角形内(包括边界)任意两点间的距离不大于其最大边长”来保证,下面我们就来证明这个定理。如图2,设BC是ABC的最大边,P,M是ABC内(包括边界)任意两点,连接PM,过P分别作AB、BC边的平行线,过M作AC边的平行线,设各平行线交点为P、Q、N,那么PQN=C,QNP=A因为BCAB,所以AC,则QNPPQN,而QMPQNPPQN(三角形的外角大于不相邻的内角),所以 PQPM。显然BCPQ,故BCPM。由此我们可以推知,边长为的等边三角形内(包括边界)两点间的距离不大于。 说明:(1)这里是用等分三角形的方法来构造“抽屉”。
9、类似地,还可以利用等分线段、等分正方形的方法来构造“抽屉”。例如“任取n+1个正数ai,满足0ai1(i=1,2,n+1),试证明:这n+1个数中必存在两个数,其差的绝对值小于”。又如:“在边长为1的正方形内任意放置五个点,求证:其中必有两点,这两点之间的距离不大于。 例2、 从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。 分析:本题似乎茫无头绪,从何入手?其关键何在?其实就在“两个数”,其中一个是另一个的整数倍。我们要构造“抽屉”,使得每个抽屉里任取两个数,都有一个是另一个的整数倍,这只有把公比是正整数的整个等比数列都放进去同一个抽屉才行,这里
10、用得到一个自然数分类的基本知识:任何一个正整数都可以表示成一个奇数与2的方幂的积,即若mN+,KN+,nN,则m=(2k-1)2n,并且这种表示方式是唯一的,如1=12,2=121,3=32, 证明:因为任何一个正整数都能表示成一个奇数乘2的方幂,并且这种表示方法是唯一的,所以我们可把1-100的正整数分成如下50个抽屉(因为1-100中共有50个奇数): (1)1,12,122,123,124,125,126;2)3,32,322,323,324,325;3)5,52,522,523,524; (4)7,72,722,723;(5)9,92,922,923;(6)11,112,1122,11
11、23;(25)49,492;(26)51;(50)99。 这样,1-100的正整数就无重复,无遗漏地放进这50个抽屉内了。从这100个数中任取51个数,也即从这50个抽屉内任取51个数,根据抽屉原则,其中必定至少有两个数属于同一个抽屉,即属于(1)-(25)号中的某一个抽屉,显然,在这25个抽屉中的任何同一个抽屉内的两个数中,一个是另一个的整数倍。 说明: (1)从上面的证明中可以看出,本题能够推广到一般情形:从1-2n的自然数中,任意取出n+1个数,则其中必有两个数,它们中的一个是另一个的整数倍。想一想,为什么?因为1-2n中共含1,3,2n-1这n个奇数,因此可以制造n个抽屉,而n+1n,
12、由抽屉原则,结论就是必然的了。给n以具体值,就可以构造出不同的题目。例2中的n取值是50,还可以编制相反的题目,如:“从前30个自然数中最少要(不看这些数而以任意方式地)取出几个数,才能保证取出的数中能找到两个数,其中较大的数是较小的数的倍数?” (2)如下两个问题的结论都是否定的(n均为正整数)想一想,为什么? 从2,3,4,2n+1中任取n+1个数,是否必有两个数,它们中的一个是另一个的整数倍?从1,2,3,2n+1中任取n+1个数,是否必有两个数,它们中的一个是另一个的整数倍?(3)如果将(2)中两个问题中任取的n+1个数增加1个,都改成任取n+2个数,则它们的结论是肯定的还是否定的?你
13、能判断证明吗? 例3从1到25的25个自然数中任意取出7个数,证明:取出的数中一定有两个数,这两个数中大数不超过小数的1.5倍。 证明:把前25个自然数分成下面6组: 1; 2,3; 4,5,6; 7,8,9,10; 11,12,13,14,15,16; 17,18,19,20,21,22,23, 因为从前25个自然数中任意取出7个数,所以至少有两个数取自上面第组到第组中的某同一组,这两个数中大数就不超过小数的1.5倍。说明:(1)本题可以改变叙述如下:在前25个自然数中任意取出7个数,求证其中存在两个数,它们相互的比值在内。显然,必须找出一种能把前25个自然数分成6(7-1=6)个集合的方法
14、,不过分类时有一个限制条件:同一集合中任两个数的比值在内,故同一集合中元素的数值差不得过大。这样,我们可以用如上一种特殊的分类法:递推分类法: 从1开始,显然1只能单独作为1个集合1;否则不满足限制条件.能与2同属于一个集合的数只有3,于是2,3为一集合。如此依次递推下去,使若干个连续的自然数属于同一集合,其中最大的数不超过最小的数的倍,就可以得到满足条件的六个集合。 (2)如果我们按照(1)中的递推方法依次造“抽屉”,则第7个抽屉为 26,27,28,29,30,31,32,33,34,35,36,37,38,39;第8个抽屉为:40,41,42,60;第9个抽屉为:61,62,63,90,
15、91; 例4在坐标平面上任取五个整点(该点的横纵坐标都取整数),证明:其中一定存在两个整点,它们的连线中点仍是整点。 分析与解答:由中点坐标公式知,坐标平面两点(x1,y1)、(x2,y2)的中点坐标是。欲使都是整数,必须而且只须x1与x2,y1与y2的奇偶性相同。坐标平面上的任意整点按照横纵两个坐标的奇偶性考虑有且只有如下四种:(奇数、奇数),(偶数,偶数),(奇数,偶数),(偶数,奇数)以此构造四个“抽屉”,则在坐标平面上任取五个整点,那么至少有两个整点,属于同一个“抽屉”因此它们连线的中点就必是整点。 说明:我们可以把整点的概念推广:如果(x1,x2,xn)是n维(元)有序数组,且x1,
16、x2,xn中的每一个数都是整数,则称(x1,x2,xn)是一个n维整点(整点又称格点)。如果对所有的n维整点按每一个xi的奇偶性来分类,由于每一个位置上有奇、偶两种可能性,因此共可分为222=2n个类。这是对n维整点的一种分类方法。当n=3时,23=8,此时可以构造命题:“任意给定空间中九个整点,求证它们之中必有两点存在,使连接这两点的直线段的内部含有整点”。 例5在任意给出的100个整数中,都可以找出若干个数来(可以是一个数),它们的和可被100整除。 分析:本题也似乎是茫无头绪,无从下手,其关键何在?仔细审题,它们的“和”能“被100整除”应是做文章的地方。如果把这100个数排成一个数列,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学竞赛专题讲座2 集合与容斥原理 高中数学 竞赛 专题讲座 集合 原理

链接地址:https://www.31ppt.com/p-4063689.html