行列式解法小结数学毕业论文.doc
《行列式解法小结数学毕业论文.doc》由会员分享,可在线阅读,更多相关《行列式解法小结数学毕业论文.doc(7页珍藏版)》请在三一办公上搜索。
1、行列式的解法小结摘要:本文列举了行列式的几种计算方法:如化三角形法,提取公因式法等,并指明了这几种方法的使用条件。关键词:行列式 三角形行列式 范德蒙行列式 循环行列式行列式的计算是一个很重要的问题,也是一个复杂的问题,阶数不超过3的行列式可直接按行列式的定义求值,零元素很多的行列式(三角形行列式)也可按行列式的定义求值。对于一般阶行列式,特别是当较大时,直接用定义计算行列式几乎是不可能的事。因此,研究一般阶行列式的计算方法是十分必要的。由于不存在计算阶行列式的一般方法,所以,本文只给出八种特殊的计算方法,基本上可解决一般阶行列式的计算问题。1 升阶法在计算行列式时,我们往往先利用行列式的性质
2、变换给定的行列式,再用展开定理使之降阶,从而使问题得到简化。有时与此相反,即在原行列式的基础上添行加列使其升阶构造一个容易计算的新行列式,进而求出原行列式的值。这种计算行列式的方法称为升阶法。凡可利用升阶法计算的行列式具有的特点是:除主对角线上的元素外,其余的元素都相同,或任两行(列)对应元素成比例。升阶时,新行(列)由哪些元素组成?添加在哪个位置?这要根据原行列式的特点作出选择。例1计算n阶行列式 ,其中解 将最后一个行列式的第j列的倍加到第一列(,就可以变为上三角形行列式,其主对角线上的元素为1+故 例2 计算n阶行列式解 好象范德蒙行列式,但并不是,为了利用范德蒙行列式的结果,令 按第列
3、展开,则得到一个关于的多项式,的系数为。另一方面 显然,中的系数为所以2利用递推关系法所谓利用递推关系法,就是先建立同类型n阶与n-1阶(或更低阶)行列式之间的关系递推关系式,再利用递推关系求出原行列式的值。例3计算n阶行列式 ,其中解 将的第一行视为据行列式的性质,得 于b与c的对称性,不难得到 联立(1),(2)解之,得 例4计算n阶行列式 解将按第一行展开,得于是得到一个递推关系式,变形得 易知 所以,据此关系式在递推,有 如果我们将的第一列元素看作,1+0,0+0,按第一列坼成两个行列式的和,那么可直接得到递推关系式,同样可得的值。3 化三角形法此种方法是利用行列式的性质把给定的行列式
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 行列式解法小结 数学毕业论文 行列式 解法 小结 数学 毕业论文
链接地址:https://www.31ppt.com/p-4063574.html