七级数学竞赛辅导资料 人教新课标版(可编辑) .doc
《七级数学竞赛辅导资料 人教新课标版(可编辑) .doc》由会员分享,可在线阅读,更多相关《七级数学竞赛辅导资料 人教新课标版(可编辑) .doc(58页珍藏版)》请在三一办公上搜索。
1、七年级数学竞赛辅导资料 人教新课标版 初中数学竞赛辅导资料第一讲数的整除一内容提要如果整数A除以整数B B0 所得的商AB是整数那么叫做A被B整除 0能被所有非零的整数整除 一些数的整除特征除 数 能被整除的数的特征2或5末位数能被2或5整除 4或25末两位数能被4或25整除8或125末三位数能被8或125整除3或9各位上的数字和被3或9整除 如77154324 11奇数位上的数字和与偶数位上的数和相减其差能被11整除 如14318591287908270等 71113从右向左每三位为一段奇数段的各数和与偶数段的各数和相减其差能被7或11或13整除 如1001227431756721281等
2、能被7整除的数的特征抹去个位数减去原个位数的2倍其差能被7整除如1001100298能被7整除又如700770014686681256能被7整除能被11整除的数的特征抹去个位数减去原个位数其差能被11整除如1001100199能11整除又如10285102851023102399能11整除二例题例1已知两个三位数328和的和仍是三位数且能被9整除求xy解xy都是0到9的整数能被9整除y 6328567x 3例2已知五位数能被12整除求解五位数能被12整除必然同时能被3和4整除当1234能被3整除时x 258当末两位能被4整除时0488例3求能被11整除且各位字都不相同的最小五位数解五位数字都不
3、相同的最小五位数是10234但124034不能被11整除只调整末位数仍不行调整末两位数为30415263均可五位数字都不相同的最小五位数是10263练习一1分解质因数写成质因数为底的幂的连乘积75618591287327610101102962若四位数能被3整除那么 a _3若五位数能被11整除那么_4当m _时能被25整除5当n _时能被7整除6能被11整除的最小五位数是_最大五位数是_7能被4整除的最大四位数是_能被8整除的最大四位数是_88个数1257561011245778558104915270972中能被下列各数整除的有填上编号6_8_9_11_9从1到100这100个自然数中能同
4、时被2和3整除的共_个能被3整除但不是5的倍数的共_个10由12345这五个自然数任意调换位置而组成的五位数中不能被3整除的数共有几个为什么11已知五位数能被15整除试求A的值12求能被9整除且各位数字都不相同的最小五位数13在十进制中各位数码是0或1并能被225整除的最小正整数是_1989年全国初中联赛题 第二讲 倍数约数一内容提要1两个整数A和BB0如果B能整除A记作BA那么A叫做B的倍数B叫做A的约数例如31515是3的倍数3是15的约数2因为0除以非0的任何数都得0所以0被非0整数整除0是任何非0整数的倍数非0整数都是0的约数如0是7的倍数7是0的约数3整数AA0的倍数有无数多个并且以
5、互为相反数成对出现0A2A都是A的倍数例如5的倍数有5104整数AA0的约数是有限个的并且也是以互为相反数成对出现的其中必包括1和A例如6的约数是12365通常我们在正整数集合里研究公倍数和公约数几个正整数有最小的公倍数和最大的公约数6公约数只有1的两个正整数叫做互质数例如15与28互质7在有余数的除法中被除数除数商数余数若用字母表示可记作ABQR当ABQR都是整数且B0时AR能被B整除例如23372则232能被3整除二例题例1写出下列各正整数的正约数并统计其个数从中总结出规律加以应用22223243323334232232232解列表如下正整数正约数个数计正整数正约数个数计正整数正约数个数计
6、21223132231236422124332133232231234612623124843313323342232123469121836924124816534133233345其规律是设Aambn ab是质数mn是正整数 那么合数A的正约数的个数是m1 n1 例如求360的正约数的个数解分解质因数36023325360的正约数的个数是31211124个例2用分解质因数的方法求2490最大公约数和最小公倍数解24233902325最大公约数是23 记作24906最小公倍数是23325360 记作2490 360例3已知3244除以正整数N有相同的余数2求N解322442都能被N整除N是3
7、042的公约数30426而6的正约数有1236经检验1和2不合题意N63例4一个数被10除余9被9除余8被8除余7求适合条件的最小正整数分析依题意如果所求的数加上1则能同时被1098整除所以所求的数是1098的最小公倍数减去1解1098 360所以所求的数是359练习二112的正约数有_16的所有约数是_2分解质因数300_300的正约数的个数是_3用分解质因数的方法求20和250的最大公约数与最小公倍数4一个三位数能被7911整除这个三位数是_5能同时被3511整除的最小四位数是_最大三位数是_6已知14和23各除以正整数A有相同的余数2则A_7写出能被2整除且有约数5又是3的倍数的所有两位
8、数8一个长方形的房间长135丈宽105丈要用同一规格的正方形瓷砖铺满问正方形最大边长可以是几寸若用整数寸作为边长有哪几种规格的正方形瓷砖适合9一条长阶梯如果每步跨2阶那么最后剩1阶如果每步跨3阶那么最后剩2阶如果每步跨4阶那么最后剩3阶如果每步跨5阶那么最后剩4阶如果每步跨6阶那么最后剩5阶只有每步跨7阶才能正好走完不剩一阶这阶梯最少有几阶第三讲质数合数一内容提要1正整数的一种分类 质数的定义如果一个大于1的正整数只能被1和它本身整除那么这个正整数叫做质数质数也称素数合数的定义一个正整数除了能被1和本身整除外还能被其他的正整数整除这样的正整数叫做合数根椐质数定义可知质数只有1和本身两个正约数质
9、数中只有一个偶数2如果两个质数的和或差是奇数那么其中必有一个是2如果两个质数的积是偶数那么其中也必有一个是23任何合数都可以分解为几个质数的积能写成几个质数的积的正整数就是合数二例题例1两个质数的和等于奇数a a5 求这两个数解两个质数的和等于奇数必有一个是2所求的两个质数是2和a2例2已知两个整数的积等于质数m 求这两个数解质数m只含两个正约数1和m 又1m m所求的两个整数是1和m或者1和m例3已知三个质数abc它们的积等于30求适合条件的abc的值解分解质因数30235适合条件的值共有 应注意上述六组值的书写排列顺序本题如果改为4个质数abcd它们的积等于210即abcd 2357那么适
10、合条件的abcd值共有24组试把它写出来例4试写出4个连续正整数使它们个个都是合数解本题答案不是唯一的设N是不大于5的所有质数的积即N235那么N2N3N4N5就是适合条件的四个合数即32333435就是所求的一组数本题可推广到n 个令N等于不大于n1的所有质数的积那么N2N3N4Nn1就是所求的合数练习三1小于100的质数共_个它们是_2已知质数P与奇数Q的和是11则P_Q_3已知两个素数的差是41那么它们分别是_4如果两个自然数的积等于19那么这两个数是_如果两个整数的积等于73那么它们是_如果两个质数的积等于15则它们是_5两个质数x和y已知xy 91那么x _y _或x _y _6三个
11、质数abc它们的积等于1990那么7能整除311513的最小质数是_8已知两个质数A和B适合等式AB99ABM求M及的值9试写出6个连续正整数使它们个个都是合数10具备什么条件的最简正分数可化为有限小数11求适合下列三个条件的最小整数大于1没有小于10的质因数不是质数12某质数加上6或减去6都仍是质数且这三个质数均在30到50之间那么这个质数是_13一个质数加上10或减去14都仍是质数这个质数是_第四讲 零的特性一内容提要一零既不是正数也不是负数是介于正数和负数之间的唯一中性数零是自然数是整数是偶数1零是表示具有相反意义的量的基准数例如海拔0米的地方表示它与基准的海平面一样高收支平衡可记作结存
12、0元2零是判定正负数的界限若a 0则a是正数反过来也成立若a是正数则 a0记作a0 a是正数读作a0等价于a是正数b 0 b 是负数c0 c是非负数即c不是负数而是正数或0d0 d是非正数 即d不是正数而是负数或0 e0 e不是0即e不是0而是负数或正数3在一切非负数中有一个最小值是0例如绝对值平方数都是非负数它们的最小值都是0记作a0当a 0时a的值最小是0a20a2有最小值0当a 0时4在一切非正数中有一个最大值是0例如0当0时值最大是00时都是负数0当2时的值最大是0二零具有独特的运算性质1乘方零的正整数次幂都是零2除法零除以任何不等于零的数都得零零不能作除数从而推出0没有倒数分数的分母
13、不能是03乘法零乘以任何数都得零即a00反过来如果ab 0那么ab中至少有一个是0要使等式xy 0成立必须且只需x 0或y 04加法互为相反数的两个数相加得零反过来也成立 即ab互为相反数ab 05减法两个数a和b的大小关系可以用它们的差的正负来判定若a-b 0则a b若a-b0则ab若a-b0则ab反过来也成立当a b时a-b 0当a b时a-b 0当a b时a-b 0三在近似数中当0作为有效数字时它表示不同的精确度例如com同前者表示精确到01米即1分米误差不超过5厘米 后者表示精确到001米即1厘米误差不超过5毫米可用不等式表示其值范围如下com 1651595近似数160 1605二例
14、题例1两个数相除什么情况下商是1是1答两个数相等且不是0时相除商是1两数互为相反数且不是0时相除商是1例2绝对值小于3的数有几个它们的和是多少为什么答绝对值小于3的数有无数多个它们的和是0因为绝对值小于3的数包括大于3并且小于3的所有数它们都以互为相反数成对出现而互为相反数的两个数相加得零例3要使下列等式成立应取什么值为什么103220答根据任何数乘以0都得0可知当0时可取任何数当1时取任何数等式10都是能成立互为相反数相加得零而30220它们都必须是0即30且20故当3且2时等式3220成立练习四1有理数a和b的大小如数轴所示比较下列左边各数与0的大小用号连接2a_ 0 3b_ 0 _ 0
15、_0a2 _ 0b3_ 0ab_ 0 ab_ 0 ab_ 0 2b 3_ 0 _ 0 _ 02a表示有理数下列四个式子正确个数是几个答_个 a a2 a2 a a a1 a3x表示一切有理数下面四句话中正确的共几句答_句x22有最小值0x3有最大值02x2有最大值23x1有最小值34绝对值小于5的有理数有几个它们的积等于多少为什么5要使下列等式成立字母应取什么值0006下列说法正确吗为什么a的倒数是方程a13的解是n表示一切自然数2n1表示所有的正奇数如果a b 那么m2a m2b a b m都是有理数 7取什么值时下列代数式的值是正数112 第五讲 an 的个位数一内容提要1 整数a的正整数
16、次幂an它的个位数字与a的末位数的n次幂的个位数字相同例如20023与23的个位数字都是82 0156的任何正整数次幂的个位数字都是它们本身例如57的个位数是5620的个位数是6237的正整数次幂的个位数字的规律见下表指数12345678910底数224862486243397139713977931793179其规律是2的正整数次幂的个位数是按2486四个数字循环出现即24k1与2124k2与2224k3与2324k4与24的个位数是相同的K是正整数3和7也有类似的性质4 489的正整数次幂的个位数可仿照上述方法也可以用422823932转化为以23为底的幂5 综上所述整数a的正整数次幂的个
17、位数有如下的一般规律a4km与am的个位数相同 km都是正整数 二例题20032003的个位数是多少解20032003与32003的个位数是相同的20034500332003与33的个位数是相同的都是72003的个位数是7试说明6320001472002的和能被10整除的理由解20004500200245002632000与34的个位数相同都是11472002与72的个位数相同都是96320001472002的和个位数是06320001472002的和能被10整除k取什么正整数值时3k2k是5的倍数解列表观察个位数的规律k12343的个位数39712的个位数24863k2k的个位数55从表中可
18、知当k13时3k2k的个位数是5am与a4nm 的个位数相同mn都是正整数a是整数当k为任何奇数时3k2k是5的倍数练习五1在括号里填写各幂的个位数k是正整数220的个位数是 45的个位数是330的个位数是87的个位数是74K1的个位数是 31179的个位数是 216314的个位数是32k-172k-1的个位数是72k32k的个位数是 74k-164k-3的个位数是7710331522205525的个位数是2目前知道的最大素数是22160911它的个位数是_3说明如下两个数都能被10整除的理由5353333319871989199319914正整数m取什么值时3m1是10的倍数5设n是正整数试
19、说明2 n 7n2能被5整除的理由6若a4的个位数是5那么整数a的个位数是_若a4的个位数是1那么整数a的个位数是_若a4的个位数是6那么整数a的个位数是_若a2k-1的个位数是7那么整数a的个位数是_7 12223292的个位数是_122232192的个位数是_122232292的个位数是_8 abc是三个连续正整数a2 14884c2 15376那么b2是A15116B15129C15144D15321第六讲 数学符号一内容提要数学符号是表达数学语言的特殊文字每一个符号都有确定的意义即当我们把它规定为某种意义后就不再表示其他意义数学符号一般可分为1元素符号通常用小写字母表示数用大写字母表示
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 七级数学竞赛辅导资料 人教新课标版可编辑 级数 竞赛 辅导资料 新课 编辑
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-4062153.html