北师大版初中数学《圆心角、弧、弦、弦心距之间的关系》学案.doc
《北师大版初中数学《圆心角、弧、弦、弦心距之间的关系》学案.doc》由会员分享,可在线阅读,更多相关《北师大版初中数学《圆心角、弧、弦、弦心距之间的关系》学案.doc(7页珍藏版)》请在三一办公上搜索。
1、【基础知识精讲】1.基本概念(1)顶点在圆心的角叫圆心角.(2)从圆心到弦的距离叫弦心距.(3)1的圆心角所对的弧叫1的弧.2.定理(1)圆是以圆心为对称中心的中心对称图形.(2)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等.(3)在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.3.应注意的问题(1)解题时作圆心的弦心距是常用辅助线.(2)等弧的度数一定相等,相等度数的弧不一定是等弧.【重点难点解析】本节的重点是掌握圆心角、弧、弦、弦心距之间的相等关系,并能运用这些关系解决有关的证明、计算题,难点在于
2、选择适当的辅助线,运用这几个量的相等关系解题.例1 如图7-20,O是RtABC三条角平分线的交点,C=90,O经过C点分别交AC、BC于D、E,交AB于F、G,求证=证明:作弦CD、CE、FG的弦心距OM、ON、OP, O是ABC的三条角平分线的交点, OM=ON=OP, 则:=说明:证明弧相等通常证明弧所对的弦或圆周角相等,此题由角平分线定理得三条弦的弦心距相等,从而知道这三条弧相等. 图7-20 图7-21例2 如图7-21,OA、OB是O的两条互相垂直的半径,M是弦AB的中点,过M作MCOA,交于C,求证=.证明:过M、C作MEAO于E,CFAO于F,连OC M为AB的中点,ME=OB
3、,易证MEFC为矩形 CF=OB=OC,COF=30,则=说明:若=,则COF=BOA,由题目条件知,须证明COF=30即可.例3 已知AB、CD是O的两条直径,AP是O的弦,且APCD,求证BD=DP证明:如图7-22,APCD,=,AB、CD是两直径,COA=BOD,=,则=故BD=DP说明:此题用到“夹在两平行弦之间的弧相等”,“圆心角相等弧相等”,“弧相等弧所对的弦相等”等结论.例4 如图7-23,MBA与MDC是O的二割线,已知弦AB=CD,求BM=DM.证明:作OEAB于E,OFCD于F,AB=CD,OE=OF,则RtMEORtMFO,ME=MF,又AE=AB=CD=FCMB=MC
4、说明:本题通过作弦心距将问题转化为证ME=MF,再通过三角形全等达到目的,在全等的证明过程中用到“弦相等弦心距相等”这一结论.【难题巧解点拨】例1 如图7-24,O中弦AB=CD,与的中点分别是M和N,MN与AB、CD分别交于E和F,求证:ME=NF.证明:连结AM、BM、CN、DNAB=CD,=M、N的分别为、的中点=AM=BM=CN=DN,=FND=EMB,MBE=NDF,MEBNFD,ME=FN说明:此题通过弧、弦相等关系的互换证得MB=DN,从而得MEBFND,得出结论.例2 如图7-25,已知O的两弦AB和CD相交于P,且BPO=DPO,求证:=.证明:作OECD于E,OFAB于F,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆心角、弧、弦、弦心距之间的关系 北师大 初中 数学 圆心角 弦心距 之间 关系
链接地址:https://www.31ppt.com/p-4054789.html