人教版数学初中七级下册教案全册 .doc
《人教版数学初中七级下册教案全册 .doc》由会员分享,可在线阅读,更多相关《人教版数学初中七级下册教案全册 .doc(27页珍藏版)》请在三一办公上搜索。
1、5.2.2平行线的判定(一)教学目标:经历探索两直线平行条件的过程,理解两直线平行的条件.重点:探索两直线平行的条件难点:理解“同位角相等,两条直线平行”教学过程一、情景导入.装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?要解决这个问题,就要弄清楚平行的判定。(根据平行的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行。但是,由于直线无限延伸,检验它们是否相交有困难,所以难于直接根据定义来判断两条直线是否平行。所以,有没有其他判定方法呢?)二、直线平行的条件以前我们学过用直尺和三角尺画平行线,如图(课本P13图5.
2、2-5)在三角板移动的过程中,什么没有变?(提出问题后,让学生自己操作。通过操作来体会,在移动过程中,三角尺起着什么样的作用?)三角板经过点P的边与靠在直尺上的边所成的角没有变。简化图5.2-5,得图3.图31与2是三角板经过点P的边与靠在直尺上的边所成的角移动前后的位置,显然1与2是同位角并且它们相等,由此我们可以知道什么?(让学生独立操作,独立思考后,发展自己的看法。)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单地说:同位角相等,两条直线平行.符号语言:1=2ABCD.如图(课本P145.2-7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?用角尺画平行线,
3、实际上是画出了两个直角,根据“同位角相等,两条直线平行.”,可知这样画出的就是平行线。如图,(1)如果2=3,能得出ab吗?(2)如果241800,能得出ab吗?32bac41(1)2=3(已知)3=1(对顶角相等)1=2(等量代换)ab(同位角相等,两条直线平行)你能用文字语言概括上面的结论吗?两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单地说:内错角相等,两直线平行.符号语言:2=3ab.(2)4+2=180,4+1=180(已知)(这个书写过程要求学生模仿“证明内错角相等,两直线平行”的过程完成。)2=1(同角的补角相等)ab.(同位角相等,两条直线平行)你能用文字语
4、言概括上面的结论吗?两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行.简单地说:同旁内角互补,两直线平行.符号语言:4+2=180ab.四、课堂练习1、课本P15练习1,补充(3)由A+ABC1800可以判断哪两条直线平行?依据是什么?2、课本P162题。五、课堂小结:怎样判断两条直线平行?六、布置作业:P161、2题;P174、5、6。5.2.2平行线的判定(二)主备人:黄树锋 复核人:史桂芳 复备人:戴国雄教学目标1、掌握直线平行的条件,并能解决一些简单的问题;2、初步了解推理论证的方法,会正确的书写简单的推理过程。重点:直线平行的条件及运用(利用平行线的判定定理进行有根据、目
5、的性的证明。)难点:会正确的书写简单的推理过程是教学过程一、复习导入我们学习过哪些判断两直线平行的方法?(1)平行线的定义:在同一平面内不相交的两条直线平行。(去掉)(2)平行公理的推论:如果两条直线都平行于第三条直线,那么这两条直线也互相平行。(强调)(3)两直线平行的条件:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.二、例题例在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?(把文字证明题的条件C放到后面去总结)解:这两条
6、直线平行。(改成:如图:已知ba,ca,求证:bc)ba,ca(已知)1=2=90(垂直的定义)bc(同位角相等,两直线平行)(先写几何条件,再用“文字”语言来表达,不能由深入浅,要由浅如深,更不能说是语言文字“几何化”表示)你还能用其它方法说明bc吗?方法一:如图(1),利用“内错角相等,两直线平行”说明;方法二:如图(2),利用“同旁内角相等,两直线平行”说明.(与平行公理推论:对比“垂直”平行;垂直于同一直线的两条直线平行)(1)(2)注意:本例也是一个有用的结论。例2如图,点B在DC上,BE平分ABD,DBE=A,则BEAC,请说明理由。ABCDE分析:由BE平分ABD我们可以知道什么
7、?联系DBE=A,我们又可以知道什么?由此能得出BEAC吗?为什么? (分析不够:已知条件要点-)解:BE平分ABD 求证充分要明确ABE=DBE(角平分线的定义)已知求证转化桥梁不明确又DBE=A 只说步步有据是我们“老师的话”ABE=A(等量代换) BEAC(内错角相等,两直线平行) 注意:用符号语言书写证明过程时,(慢慢引导学生,书写语言和思维过程。)要步步有据。四、课堂练习1、如图,1=2=55,试说明直线AB,CD平行?3ABCDEF 211题(希望图有弧示角)2题2、如图所示,已知直线a,b,c,d,e,且1=2,3+4=180,则a与c平行吗?为什么?五、布置作业:课本P17第7
8、题,P18第12题(不存在这样的题目修改成7题12题)(提示:画图说明)。5.3.1平行线的性质主备人:黄树锋 复核人:史桂芳 复备人:戴国雄教学目标:1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。2.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用.教学过程一、引导学生逆向思维现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补,判定两条直线平行的三种方法.在这一节课里:大
9、家把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?二、实践探究1.学生画图活动:用直尺和三角尺画出两条平行线ab,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P21图5.3-1).(本级用的课本不存在)这样的图形改成 角大散改成重点突出部分 改成只量1、2、3、4的度数比较集中容易讨论,并得出结果。2.学生测量这些角的度数,把结果填入表内.角12345678度数3.学生根据测量所得数据作出猜想.(1)图中哪些角是同位角?它们具有怎样的数量关系?(2)图中哪些角是内错角?它们具有怎样的数量关系?(3)图中哪些角是同旁内角?它们具有怎样的数量
10、关系?4.学生验证猜测.学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?5.师生归纳平行线的性质,教师板书.平行线具有性质:性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行,同位角相等.性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行,内错相等.性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行,同旁内角互补.教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定.平行线的性质平行线的判定因为ab,因为1=2,所以1=2所以ab.因为ab,因为2=3,所以2=3,所以ab.因为ab,
11、因为2+4=180,所以2+4=180,所以ab.6.教师引导学生理清平行线的性质与平行线判定的区别.学生交流后,师生归纳:两者的条件和结论正好相反:由角的数量关系(指同位角相等,内错角相等,同旁内角互补),得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论.由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等,同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论.7.进一步研究平行线三条性质之间的关系.教师:大家能根据性质1,推出性质2成立的道理吗?结合上图,教师启发分析:考察性质1、性质2的结论发生了什么变化?学生回答1换成3,教师再问
12、1与3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程.因为ab,所以1=2(两直线平行,同位角相等);又3=1(对顶角相等),所以2=3.教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有1=2,还有3=1.2=3是根据等式性质.(只作简单的启发,让学生讨论归纳,同时让学生去渲泽其他结论)根据等式性质得到的结论可以不写理由.学生仿照以下说理,说出如何根据性质1得到性质3的道理.8.平行线性质应用.讲解课本P23例题三、巩固练习:课本练习(P22).四、作业:课本P25.1,2,3,4,6.5.3.2命题、定理主备人:黄树锋 复核人:史桂芳 复备人:
13、戴国雄教学目的:1、知识与技能:了解命题的概念,并能区分命题的题设和结论.2、经历判断命题真假的过程,对命题的真假有一个初步的了解.3、初步培养学生不同几何语言相互转化的能力.重点:命题的概念和区分命题的题设与结论.难点:区分命题的题设和结论.教学过程一、创设情境复习导入教师出示下列问题:1.平行线的判定方法有哪些? 2.复习跟三种角有关的问题,针对性要强。2.平行线的性质有哪些. 提示:有什么关系?学生能积极的思考教师所出示的各个问题复习巩固有关的知识点为本节课的学习打下良好的基础.(注意:平行线的判定方法三种,另外还有平行公理的推论)二、尝试活动探索新知教师给出下列语句,如果两条直线都与第
14、三条直线平行,那么这条直线也互相平行;等式两边都加同一个数,结果仍是等式;对顶角相等;如果两条直线不平行,那么同位角不相等.因势利导学生学生能由教师的引导分析每个语句的特点.思考:你能说一说这3个语句提问:有什么共同点吗?并能耐总结出这些语句都是对某一件事情作出“是”或“不是”的判断.初步感受到有些数学语言是对某件事作出判断的.让学生直接口述,改成如果,那么的形式表示上述的语句。教师给出命题的定义.判断一件事情的语句,叫做命题.(3)命题的组成.命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.命题的形成,可以写成“如果,那么”的形式。顺延真假性。真命题与假命题:三、尝试
15、反馈理解新知教师出示问题:如果两个角相等,那么它们是对顶角.如果ab.bc那么a=b修改成ac如果两个角互补,那么它们是邻补角.明确命题有正确与错误之分:命题的正确性是我们经过推理证实的,学生了解它们的“推理”显示逻辑思维这样得到的真命题叫做定理,作为真命题,定理也可以作为继续推理的依据.1.“等式两边乘同一个数,结果仍是等式”是命题吗?它们题设和结论分别是什么?2.命题“两条平行线被第三第直线所截,内错角相等”是正确的?命题“如果两个角互补,那么它们是邻补角”是正确吗?再举出一些命题的例子,判断它们是否正确.四、总结拓展:教师引导学生完成本节课的小结,强调重要的知识点.五、布置作业:习题5.
16、3第11题.5.4平移主备人:罗炳雄 复核人:史桂芳 复备人:戴国雄教学目标:1、了解平移的概念,会进行点的平移,理解平移的性质,能解决简单的平移问题2、培养学生的空间观念,学会用运动的观点分析问题.重点:平移的概念和作图方法.难点:平移的作图.教学过程一.观察图形形成印象生活中有许多美丽的图案,他们都有着共同的特点,请同学们欣赏下面图案.观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?学生思考讨论,借助举例说明.二.提出新知实践探索平移:(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.(2)新图形中的每一点,
17、都是由原图形中的某一个点移动后得到的,这两个点是对应点.(3)连接各组对应的线段平行且相等.图形的这种变换,叫做平移变换,简称平移探究:设计一个简单的图案,利用一张半透明的纸附在上面,绘制一排形状,大小完全一样的图案引导学生找规律,发现平移特征三.典例剖析深化巩固例如图,(1)平移三角形ABC,使点A运动到A,画出平移后的ABC先观察探讨,再通过点的平移,线段的平移总结规律,给出定义探究活动可以使学生更进一步了解平移(1、点的平移如把点A按水平方向平移4厘米 A 2、线段的平移如把线段AB,把点A移动到点 AB 结论:线段平移,也就是两个端点的平移由A到既确定了平移的方向,也确定了平移的距离。
18、3、图形的平移如平移ABC,使点A运动到点)四、巩固练习课本33页:1,2,4,5,6,7五、小结:在平移过程中,对应点所连的线段也可能在一条直线上,当图形平移的方向是沿着一边所在直线的方向时,那么此边上的对应点必在这条直线上。2利用平移的特征,作平行线,构造等量关系是接7题常用的方法.六、作业课本P33页习题5.4第3题第五章小结主备人:黄树锋 复核人:史桂芳 复备人:戴国雄教学目标:1.经历对本章所学知识回顾与思考的过程,将本章内容条理化,系统化,梳理本章的知识结构.毛2.通过对知识的疏理,进一步加深对所学概念的理解,进一步熟悉和掌握几何语言,能用语言说明几何图形.3.使学生认识平面内两条
19、直线的位置关系,在研究平行线时,能通过有关的角来判断直线平行和反映平行线的性质,理解平移的性质,能利用平移设计图案.重点:复习正面内两条直线的相交和平行的位置关系,以及相交平行的综合应用.难点:运用平行线的性质与判定解决一些实际问题。.教学过程一、复习提问本章相交线、平行线中学习了哪些主要问题?教师根据学生的回答,逐步形成本章的知识结构图,使所学知识系统化.二、回顾与思考补:请你带着下面的问题复习一下全章的内容。1运用语言描述:对顶角,邻补角,垂直,平行,同位角,内错角,同旁内角,平移。2两条直线相交形成四个角,它们具有怎样的位置关系和数量关系?3.什么是点到直线的距离?你会度量吗?4怎样判定
20、两条直线是否平行?平行有什么性质;对比平行线的性质和直线平行的判定方法;它们有什么异同?5什么是命题?如何判断一个命题是真命题还是假命题?请结合具体例子证明。6.图形平移时,连接各对应点的线段有什么关系?你能利用平移设计一些图案吗?1.对顶角、邻补角。(1)教师提出问题两条直线相交、构成哪两种特殊位置关系的角?指出图(1)中具有这两种位置的角.(1)(2)(3)如图(2)中,若AOD=90,那么直线AB,CD的位置关系如何?如图(3)中,1与2,2与3,3与4是怎么位置关系的角?(2)学生回答.(3)教师强调:对顶角、邻补角是由两条相交面而成的具有特殊位置关系的角,要抓住对顶角的特征,有公共顶
21、角,角的两边互为反向延长线;邻补角的特征:有公共顶有一条公共边,另一边互为反向延长线。(4)对顶角有什么性质?(对顶角相等)如果两个对顶角互补或邻补角相等,你得到什么结论?让学生明确,对顶角总是相等,邻补角一定互补,但加上其他条件如对顶角或邻补角相等后,那么问题中每个角的度数就随之确定,为90角,这时两条直线互相垂直.2.垂线及其性质.(1)复习时教师应强调垂线的定义即可以作垂线的制定方法用,也可以作垂线性质用.作判定用时写成:如图(2),因为AOD=90,所以ABCD,这是一个角的“数”到两直线垂直的“形”的判断。作为性质用时写成:如图(2),因为ABCD,所以AOD=90。这是由“形”到“
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版数学初中七级下册教案全册 人教版 数学 初中 下册 教案
链接地址:https://www.31ppt.com/p-4052155.html