高二物理选修课课程集.doc
《高二物理选修课课程集.doc》由会员分享,可在线阅读,更多相关《高二物理选修课课程集.doc(35页珍藏版)》请在三一办公上搜索。
1、铁路提速与弯道向心力2004年4月,全国铁路实现了自1994年以来的第五次大面积提速,时速160千米及其以上的线路达到7700千米。今年还将实施第六次大面积提速,部分提速干线列车时速可以提高到200千米,相当于F1赛车多数情况下的平均速度。 速度,就是效益,就是竞争力,是交通运输现代化最重要的表现。发展高速铁路是当今世界各国铁路交通发展的潮流与主导趋势。但是制约铁路提速的众多因素中,最重要的一条是“弯道”。据郑州铁路局报道:为了列车的安全和平衡,需对7000多千米铁路线上的弯道一一进行调整,将小半径曲线线路全部改造成大半径曲线或直线线路,同时调高曲线外轨。在去年第五次大提速之前,仅郑州铁路局管
2、理的路段内就改造弯道1000多处。仅此一项就可看出,铁路的大面积提速,对中国而言是一个浩大工程。弯道,成为制约速度提升的瓶颈。由力学知识,当物体作曲线运动时。向心(或法向)加速度an的大小与速度的平方成正比,而与曲线的曲率半径成反比,即anv2/。根据牛顿运动定律,力是改变运动状态的原因,即力是产生加速度的原因。所以做曲线运动的物体都受到指向曲率中心的向心力作用,即F向=man=mv2/。对此我们都有切身体会。当乘坐的汽车左转弯时,此时如紧靠车厢右壁,可感觉到身体在使劲挤压车厢壁,是车厢壁给人的反作用力与座位给人的静摩擦力提供向心力。如未靠车壁,只能由座位给的静摩擦力提供向心力。当车速较大时,
3、若静摩擦力不足以提供所需的向心力时,人就会滑离座位。训练有素的运动员也会利用力学的规律为自己赢得胜利。这是我们在田径场上经常见到的一幕:当进入弯道时,只见运动员以臀髋部带动身体向内倾斜,摆臂幅度右大于左,两脚的着力部位左脚用前脚掌的外侧,右脚用前脚掌的内侧,跑得越快则向内倾斜越大。这样做目的只有一个,利用身体倾斜来获得地面产生的横向摩擦力所提供的向心力,从而才能以较快的速度跑过弯道。当今世界上最具挑战性、最刺激的运动项目,莫过于F1赛车比赛了。一辆辆赛车在曲折的赛道上风驰电挚般你追我赶,真令观众心惊肉跳。我们还是来看看新近建成的上海国际赛车场赛道的有关档案吧:在5000多米的单圈长度上,竟布置
4、了左、右拐14个弯道,弯道曲线最大半径120米、最小半径只有8.8米,而赛车的平均速度为205千米/小时,最高允许时速达327千米/小时。赛车过弯道的向心力显然是靠车与地面的摩擦力来提供的。如正压力等于车重,当车速较高时,摩擦力远远满足不了安全通过弯道的需要。设计者在这里运用空气动力学的知识做了精心设计。除车体本身的流线型设计和底盘的导流板能产生下压力外,还在车的前、后安装了定风翼。定风翼如同倒装的飞机机翼,机翼产生上升力,而定风翼在赛车高速奔驰时产生的是下压力。 弯道,也是对车手赛车驾控技术最严格的考验。为顺利通过弯道,车手只有重踩刹车,将车速由高速降到2档以下,设赛车过最小弯道(R=8.8
5、米,又称发夹弯)时车速为70千米/小时,不难算出车手此时的向心加速度是重力加速度的4.38倍,即an4.38g,车手所承受的向心力也高达其体重的4.38倍,犹如瞬时对车手的颈部肌肉加上了约35千克侧向负荷。这对一般人来说,绝对是难以承受的;只有经过长期训练,才能有如此大的抗荷耐力。能够驾驭F1赛车,特别是每年的参赛者,不但要有精湛的驾驶技术,更要具备良好的心理素质和超人的体魄。所以当听说FIA(国际汽车联合会)颁发的F1赛车特别驾照的获得者,全球只有百十来名,也就不足为奇了。话题还是回到铁路提速上吧。旅客乘坐火车,要求的是舒适和安全,而不会要求享受F1赛车手“超速感应的刺激”。所以对弯道向心力
6、一定要有严格控制。列车通过弯道时的向心力主要是通过提高弯道外侧钢轨的高度,利用外轨超高,使车体向弯道内侧倾斜而获得。如图所示,设左右车轮滚动圆间距离为S、外轨超高为h、车重为G、轨道支承力为N,它们的合力(即列车转弯时的向心力)F=Gtan。因为sin=h/S,当较小时,tansin。所以F=Gh/S(1),因此向心加速度a=gh/S(2),还可推出弯道半径R=V2S/gh(3)。 在客货混运的普通线路上,为了保证运行速度较慢的货物列车的安全,更要保证列车在曲线上停车时决不能向内侧倾覆,我国铁路干线规定,最大允许超高为150毫米。在外轨超高极限值的限制下,当较高速度的列车通过弯道时,外轨超高所
7、能提供的向心力显然不能满足列车转弯实际需要的向心力,它们之差称“未平衡的向心力”(有时干脆直接称它为“未平衡的离心力”,用a1表示)。通过对乘客舒适度的反复实验,我国铁路设计标准规定,通过弯道时未平衡的离心加速度最大不能超过0.077g。将这个加速度值折算成外轨超高量可能更容易理解。取S=1.5米,将a1=0.077g代入(2)式,算出相当高度h1=116毫米,并形象地称此高度为“欠超高”。我国铁路干线允许欠超高为110毫米。“欠超高”实质就是将外轨超高后所提供向心力不足的部分,利用列车轮轨之间尤其是外侧轮轨之间的横向作用力来补充,而对车内旅客则是利用人与地板或座位间的摩擦力来提供。所以在计算
8、最小弯道半径的公式中,超高h是取实际外轨超高h0与欠超高h1之和。如取h=h0+h1=250毫米、车速v=300千米/小时,代入(3)式,可算出对应弯道最小半径Rmin=4250米。我国铁路干线弯道半径一般是8001000米左右,所以在铁路提速前要对旧线进行大规模改建。目前我国铁路已实现的提速基本上都是在既有线路上进行的。由于我国很多地区多山,弯道多、半径小,如仅靠改造线路提速将非常艰难。一些发达国家,正在快速发展一种新型的铁路客运装备,当列车经过弯道时,车厢能利用惯性自动倾斜,以补充所需的向心力;既能以较高速度通过弯道,又能有效保证列车运行的平稳性,这就是通常所说的高速摆式列车。这种列车目前
9、在我国还处于试验运行阶段。为使列车快速通过弯道,工程技术人员遵循力学规律,做出了许多努力。力学知识对工程技术的发展起着重要的作用,在飞速发展的科技新时代,力学更有着广阔的用武之地。黑洞及其视界附近的物理规律人类对黑洞的认识过程在1796年,法国天文学家拉普拉斯在他的著作宇宙体系论中就预言:如果它引力足够强,光速也不足以成为逃逸速度的话,我们可能会看不见它。宇宙中最大的天体可能是完全看不见的,这种观点是建立在牛顿引力理论基础上的,当时没有任何办法能够验证他的想法。直到100年后,爱因斯坦发表了广义相对论,它在基本概念上与牛顿引力理论完全不同。在广义相对论中,空间和时间构成了一个四维时空,时空的几
10、何性质与物质,通过爱因斯坦引力方程联系起来,物质是引力的源,也决定了时空的弯曲。广义相对论发表后不久,德国天文学家史瓦西立即对球对称的情况求出了爱因斯坦引力方程的解。按照这个解,质量为M的不旋转的球形天体存在一个临界半径Rg,半径内外时空性质迥然不同,而Rg定义为引力半径或史瓦西半径。同以前的拉普拉斯一样,他也不知道这种天体是否真地存在。这个问题直到1939年才得到证明,当时奥本海墨和一个学生共同证明:一颗冷却的、质量非常大的恒星,理论上必然要无限坍缩而变成黑洞,即黑洞可能是真实的天体。黑洞的形成目前认为黑洞是质量达太阳数十倍的巨型星球在其生涯的最后一刻发生大爆炸后形成的。在恒星内部的高温高压
11、条件下,原子核进行着强烈的聚变反应,这种热核反应释放出来的核能与聚向中心的引力相抗衡,使恒星维持着稳定的状态,同时向外界辐射出巨大的光能和热能,时间长达几十亿、几百亿年。但稳定的热核反应不可能永远持续,当热核反应不能稳定进行时,恒星就走向毁灭。衰老的恒星如何演变,取决于剩下的星核的质量。其中,小质量和中等质量星核的恒星将成为白矮星;而当剩下的星核的质量达到太阳质量的14倍时,其引力足以把星核内的原子压缩到使电子和质子结合成中子的程度,此时星核就成了一颗中子星;而当星核质量超过太阳质量的23倍时,再不会有任何力能够与引力抗衡,星体将不可避免地一直坍缩下去理论上,最后成为体积为零、密度无穷大的点。
12、需要说明的是,以上黑洞的形成过程目前还只是天体物理理论的一种推测。史瓦西半径任何天体都存在一个临界半径,即史瓦西半径Rg。在Rg的里面,时空弯曲得非常厉害,以致光都不能逃逸出来。按照狭义相对论:光速是任何物体可能达到的最大速度,因此也就没有任何别的物体能从史瓦西半径以内的区域逃出。史瓦西半径的数学表达式为Rg=2GMc2(1)其中c为光速,G为牛顿万有引力常数,M为质量。从这个数学表达式,我们可以看到史瓦西几何所具有的普遍性,因为它与恒星的类型无关,而只依赖一个参数质量。因此按照公式(1)可以计算任何一个球形天体的史瓦西半径的大小,比如太阳。像太阳这样质量的恒星,带入公式后算出史瓦西半径大约为
13、2.95千米,即如果太阳被压缩进直径5.9千米的球内时,它将成为黑洞。而地球若成为黑洞,则地球上的一切物质,包括大气、海洋、山脉、河流和一切生物,要全部压缩到直径为1厘米的小球内。视界视界是黑洞的边界,是黑洞表面距离中心半径为Rg的一个球面。因此它的半径依赖于黑洞的质量。视界是时空的分界,它将所有事件分为两类。在视界以外,可以由光信号在任意距离上相互联系,这就是我们所居住的正常宇宙;而在视界以内,光线并不能自由地从一个物体传播到另一个物理,而是朝向中心集聚。而且进入视界的外来辐射也将继续进入黑洞,而不可能被反射出去。奇点用视界包围的质量和体积计算的平均密度与质量的平方成反比,因此黑洞的质量越小
14、,平均密度越大。当天体坍缩到越过视界时,引力仍占压倒性优势,它将继续向中心坍缩,天体的所有物质最后聚集在中心的一个点上。体积为零,质量虽然有限,但密度却无穷大,这个点就是奇点。黑洞的简单物理规律引力规律天体(或天体系统)的引力半径Rg与它的实际尺度R之比率RgR=2GM(Rc2),标志着该天体(或天体系统)引力场的强弱:若RgRl,则属于弱引力场;若RgR1,则属于强引力场。地球、银河系、太阳、白矮星、中子星和黑洞引力场的数量级依次为10-89、10-6、10-5.4、10-4、10-1和1。由此可见,大部分天体(或天体系统)的引力场很弱,时空弯曲很小,牛顿引力理论完全适用;但黑洞引起的时空弯
15、曲很大,必须用广义相对论处理。从以上列举的几个数字就可以理解,黑洞强大的引力,没有任何力量可以与之抗衡。图1表示一个球对称恒星引力坍缩的四个阶段,越来越多的光逐渐被留住。坍缩之前(图la),恒星的体积远大于史瓦西半径所规定的尺度;按照广义相对论,它的引力场对光线几乎没有影响,从恒星表面上某一点发出的光可以朝任何方向沿直线传播。随后,恒星坍缩(图1b),随着其半径趋近于史瓦西半径,引力阱加深,时空弯曲程度增大,光线被迫弯曲,偏离直线。当恒星半径等于15倍史瓦西半径时,出射的光线会背道而驰,落回恒星表面,就像喷泉的水。这些光线组成一个光球,像茧一样包裹着坍缩中的恒星。远处的观测者只能偶尔看到少数逃
16、逸出来的光子。随着引力坍缩的继续,能够逃逸的光子越来越少,光的“逃逸锥”在不断缩小(图lc),当恒星达到临界的史瓦西半径时,所有光线都被捕获,即使那些沿径向射出的也不例外。逃逸锥完全关闭,光球消失,黑洞也就形成(图ld)。其表面,即史瓦西球面,就是不可见区域的边界,也就是所谓的视界。黑洞无毛定理对于物理学家来说,一个黑洞或一块方糖都是极为复杂的物体,因为对它们的完整描述,即包括它们的原子和原子核结构在内的描述,需要有亿万个参量。与此相比,一个研究黑洞外部的物理学家就没有这样的问题。黑洞是一种极其简单的物体,如果知道了它的质量、角动量和电荷,也就知道了有关它的一切。黑洞几乎不保持形成它的物质所具
17、有的任何复杂性质。它对前身物质的形状或成分都没有记忆,它保持的只是质量、角动量、电荷。消繁归简或许是黑洞最基本的特征。有关黑洞的大多数术语的发明家约克惠勒,在60年前把这种特征称为“黑洞无毛”。一开始,这只是一种猜测,20世纪70年代得到了严格的数学证明。这是包括默东天文台的布兰登卡特和澳大利亚的加里班亭在内的理论物理学家l5年努力的结果。他们证明,描述一个平衡态黑洞周围的时空几何只需要3个参量,从而证实了惠勒的表述。黑洞的参量是可以精确测量出来的,尽管是借助于理想实验。可以把一颗卫星放在围绕黑洞的轨道上,并测量卫星的轨道周期,从而得到黑洞的质量。黑洞的角动量可以通过比较朝向视界的不同部分的光
18、线的偏转来测量。对于上文提到的有一定质量的克尔-纽曼黑洞,电荷和角动量都有上限,也就是都受到保证视界这一条件的限制。如果在某个大质量恒星的引力坍缩过程中,这个限制被违反,黑洞就成了裸奇点,并能影响到宇宙中的远距离处。然而,物理学家有充足的理由相信,这种情况被自然规律所禁止,因而不会发生。既然只由3个参量支配,一个黑洞就像一个基本粒子一样简单。尽管基本粒子也是把质量、角动量、电荷集中在一个很小的体积内。但是,只要考虑一下视界存在的条件,就知道没有什么比基本粒子与黑洞的差别更大。以电子为例,实验已经确定它的3个参量,就相同质量来说,电子的电荷和角动量超过黑洞上限的1088。这个令人惊谔的数字甚至超
19、过了可观测的宇宙基本粒子总数,而这正是一个电子和一个克尔-纽曼黑洞之间差异的量度。x射线辐射规律理论上认为物质掉入黑洞时会有x射线辐射,我们以气体为例讲述一下物质发生辐射的物理过程。当气体围绕黑洞旋转而趋近黑洞时,相对于黑洞会有较大的角动量,还会形成气盘。气盘中的气体会受到挤压,同时相邻气体的粘滞性引起摩擦产生热能。随着气体旋转速度的加快,它们被压缩得也愈加厉害,温度也随之越来越高。这种下降的热涡气流旋的温度和密度最后变得非常高,当它们接近视界时就会发射X射线。有关黑洞的其他一些物理性质,因涉及量子理论和现代的物理学原理,如黑洞的熵、黑洞蒸发等黑洞的量子性质,在这里没有详细介绍。因为黑洞的量子
20、理论似乎导致了物理学中的一个新的不可预测性层次,它超出了与量子力学有关的通常的不确定性。这是因为黑洞看来具有内在熵,并使信息从我们所在的宇宙区域中失去。应当指出,这些说法是存在争议的:许多研究量子引力的人(包括从粒子物理学进入这一领域的几乎所有人)都本能地反对关于一个系统的量子状态信息可能丢失的概念。量子理论认为黑洞发出辐射并损失质量,最终它们似乎完全消失,带走了内部存储的信息。遗憾的是,与海森伯的不确定性原理不同,黑洞这一额外的层次很难用实验验证。关于黑洞的研究和认识会随着更先进的观测手段和物理理论的不断进步,取得新的成果。这个神秘的天体最终会以崭新的面貌呈现于我们面前,那个时候我们对宇宙和
21、自然的认识将取得更多的成果。纳米技术在汽车上的应用前景 纳米技术将会带来一场技术革命,从而引起2l世纪又一场产业革命。纳米是一种度量单位,1纳米为十亿分之一米。纳米结构是指尺寸在100纳米以下的微小结构,在该水平上对物质和材料进行研究和处理的技术,称为纳米技术。纳米技术或称毫微米技术,是在单个原子和分子层次上对物质存在的种类、数量和结构形态等进行精确的观测、识别与控制技术的研究与应用。纳米技术能够从汽车车身应用到车轮,几乎可以涵盖一辆汽车的全部,纳米技术在汽车材料上的广泛应用,也将使汽车产生质的飞跃。就目前来说,只有纳米技术,才是新世纪汽车发展的核心技术。目前,纳米技术在汽车上的运用主要在以下
22、方面: 一、纳米新材料在汽车上的应用 一般塑料常用的种类有PP(聚丙烯)、PE(聚乙烯)、PVC(聚氯乙烯)、ABS(方烯腈-丁二烯-苯乙烯)、PA(聚酰胺)、PC(聚碳酸酯)、PS(聚苯乙烯)等几十种,为满足一些行业的特殊需求,用纳米技术改变传统塑料的特性,呈现出优异的物理性能,强度高,耐热性强,重量更轻。随着汽车应用塑料数量越来越多,纳米塑料很可能会普遍应用在汽车上。这些纳米功能塑料最引起汽车业内人士兴趣的,有阻燃塑料、增强塑料、抗紫外线老化塑料、抗菌塑料等。 阻燃塑料是以纳米级超大比表面积的无卤阻燃复合粉末为载体,经表面改性可制成的阻燃剂,利用纳米技术添加到聚乙烯中。由于纳米材料的粒径超
23、细,经表面处理后具有相 当大的表面活性,当燃烧时其热分解速度迅速,吸热能力增强,从而降低基材表面温度,冷却燃烧反应。同时当阻燃塑料燃烧时,超细的纳米材料颗粒能覆盖在被燃材料表面并生成一层均匀的碳化层,此碳化层起到隔热、隔氧、抑烟和防熔滴的作用,从而起到阻燃作用。这种阻燃塑料具有热稳定性高、阻燃持久、无毒性等优点,消除普通无机阻燃剂由于添加量大对材料力学性能和加工材料污染环境带来的缺陷,可以取替有毒的溴类、锑类阻燃材料,有利于环境保护。 增强塑料是在塑料中填充经表面处理的纳米级无机材料蒙脱土、CaCO3、SiO2等,这些材料对聚丙烯的分子结晶有明显的聚敛作用,可以使聚丙烯等塑料的抗拉强度、抗冲击
24、韧性和弹性模量上升,使塑料的物理性能得到明显改善。增强增韧塑料可以代替金属材料,由于它们比重小,重量轻,因此广泛用于汽车上可以大幅度减轻汽车重量,达到节省燃料的目的。这些用纳米技术改性的增强增韧塑料,可以用于汽车上的保险杠、座椅、翼子板、顶蓬盖、车门、发动机盖、行李舱盖等,甚至还可用于变速器箱体、齿轮传动装置等一些重要部件。 抗紫外线老化塑料是将纳米级的TiO2:、ZnO等无机抗紫外线粉体混炼填充到塑料基材中。这些填充粉体对紫外线具有极好的吸收能力和反射能力,因此这种塑料能够吸收和反射紫外线,比普通塑料的抗紫外线能力提高20倍以上,据报道这类材料经过连续700小时热光照射后,其扩张强度损失仅为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 物理 选修课 课程
链接地址:https://www.31ppt.com/p-4049034.html