高一数学教案集合 函数.doc
《高一数学教案集合 函数.doc》由会员分享,可在线阅读,更多相关《高一数学教案集合 函数.doc(213页珍藏版)》请在三一办公上搜索。
1、高一数学教案【集合、函数教案】目 录第一章集合与简易逻辑11.1 集合1习题精选151.2 子集、全集、补集19习题精选271.3 交集、并集30习题精选481.4 含绝对值的不等式49习题精选561.5 一元二次不等式的解法60习题精选681.6 逻辑联结词73习题精选801.7 四种命题84习题精选981.8 充分条件与必要条件103习题精选112第二章 函数1182.1 映射118习题精选1232.2 函数126习题精选1352.3 函数单调性与奇偶性141习题精选1472.4 反函数153习题精选1582.5 指数163习题精选1722.6 指数函数173习题精选1842.7 对数18
2、6习题精选1962.8 对数函数198习题精选2062.9 函数的应用举例208习题精选215第一章 集合与简易逻辑1.1 集合教学目标(1)初步理解集合的概念,掌握其记法及表示方法,掌握常用数集的符号,了解空集概念并掌握其符号;(2)了解集合中元素的概念,初步了解“属于”关系的意义;(3)理解集合中元素的确定性、互异性,了解集合中元素的无序性;(4)初步了解有限集、无限集、空集的意义;(5)会用集合、元素等知识表示简单集合的有关问题;(6)渗透数学是来源实践反过来又指导实践的辨证唯物主义观点教学建议 一、知识结构本小节首先从初中代数与几何涉及的集合实例人手,引出集合与集合的元素的概念,并且结
3、合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子二、重点难点分析这一节的重点是集合的基本概念和表示方法,难点是运用集合的三种常用表示方法正确表示一些简单的集合这一节的特点是概念多、符号多,正确理解概念和准确使用符号是学好本节的关键为此,在教学时可以配备一些需要辨析概念、判断符号表示正误的题目,以帮助学生提高判断能力,加深理解集合的概念和表示方法1关于牵头图和引言分析章头图是一组跳伞队员编成的图案,引言给出了一个实际问题,其目的都是为了引出本章的内容无论是分析还是解决这个实际间题,必须用到集合和逻辑的知识,也就是把它数学化一方面提高用数学的
4、意识,一方面说明集合和简易逻辑知识是高中数学重要的基础2关于集合的概念分析点、线、面等概念都是几何中原始的、不加定义的概念,集合则是集合论中原始的、不加定义的概念初中代数中曾经了解“正数的集合”、“不等式解的集合”;初中几何中也知道中垂线是“到两定点距离相等的点的集合”等等在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明我们可以举出很多生活中的实际例子来进一步说明这个概念,从而阐明集合概念如同其他数学概念一样,不是人们凭空想象出来的,而是来自现实世界3关于自然数集的分析教科书中
5、给出的常用数集的记法,是新的国家标准,与原教科书不尽相同,应该注意新的国家标准定义自然数集N含元素0,这样做一方面是为了推行国际标准化组织(ISO)制定的国际标准,以便早日与之接轨,另一方面,0还是十进位数0,1,2,9中最小的数,有了0,减法运算 仍属于自然数,其中 因此要注意几下几点: (1)自然数集合与非负整数集合是相同的集合,也就是说自然数集包含0; (2)自然数集内排除0的集,表示成 或 ,其他数集如整数集Z、有理数集Q、实数集R内排除0的集,也可类似表示 , , ; (3)原教科书或根据原教科书编写的教辅用书中出现的符号如 , , 不再适用 4关于集合中的元素的三个特性分析集合中的
6、每个对象叫做这个集合的元素例如“中国的直辖市”这一集合的元素是:北京、上海、天津、重庆。集合中的元素常用小写的拉丁字母 ,表示如果a是集合A的元素,就说a属于集合A,记作 ;否则,就说a不属于A,记作 要正确认识集合中元素的特性: (l)确定性: 和 ,二者必居其一 集合中的元素必须是确定的这就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了例如,给出集合地球上的四大洋,它的元素是:太平洋、大西洋、印度洋、北冰洋其他对象都不用于这个集合如果说“由接近 的数组成的集合”,这里“接近 的数”是没有严格标准、比较模糊的概念,它不能构成集合 (2)互异性:若 , ,则 集合中的元素是互异
7、的这就是说,集合中的元素是不能重复的,集合中相同的元素只能算是一个例如方程 有两个重根 ,其解集只能记为1,而不能记为1,1 (3)无序性:a,b和b,a表示同一个集合 集合中的元素是不分顺序的集合和点的坐标是不同的概念,在平面直角坐标系中,点(l,0)和点(0,l)表示不同的两个点,而集合1,0和0,1表示同一个集合 5要辩证理解集合和元素这两个概念 (1)集合和元素是两个不同的概念,符号和是表示元素和集合之间关系的,不能用来表示集合之间的关系例如 的写法就是错误的,而 的写法就是正确的 (2)一些对象一旦组成了集合,那么这个集合的元素就是这些对象的全体,而非个别现象例如对于集合 ,就是指所
8、有不小于0的实数,而不是指“ 可以在不小于0的实数范围内取值”,不是指“ 是不小于0的一个实数或某些实数,”也不是指“ 是不小于0的任一实数值” (3)集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符合条件 6表示集合的方法所依据的国家标准本小节列举法与描述法所使用的集合的记法,依据的是新国家标准如下的规定符号应用意义或读法备注及示例诸元素 构成的集也可用 ,这里的I表示指标集使命题 为真的A中诸元素之集例: ,如果从前后关系来看,集A已很明确,则可使用 来表示,例如 此外, 有时也可写成 或 7集合的表示方法分析集合有三种表示方法:列举法、描述法、图示法它们各
9、有优点用什么方法来表示集合,要具体问题具体分析(l)有的集合可以分别用三种方法表示例如“小于 的自然数组成的集合”就可以表为: 列举法: ; 描述法: ; 图示法:如图1。 (2)有的集合不宜用列举法表示例如“由小于 的正实数组成的集合”就不宜用列举法表示,因为不能将这个集合中的元素一列举出来,但这个集合可以这样表示: 描述法: ; 图示法:如图2 (3)用描述法表示集合,要特别注意这个集合中的元素是什么,它应该符合什么条件,从而准确理解集合的意义例如: 集合 中的元素是 ,它表示函数 中自变量 的取值范围,即 ; 集合 中的元素是 ,它表示函数值。的取值范围,即 ; 集合 中的元素是点 ,它
10、表示方程 的解组成的集合,或者理解为表示曲线 上的点组成的集合; 集合 中的元素只有一个,就是方程 ,它是用列举法表示的单元素集合实际上,这是四个完全不同的集合列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法要注意,一般无限集,不宜采用列举法,因为不能将无限集中的元素一列举出来,而没有列举出来的元素往往难以确定 8集合的分类含有有限个元素的集合叫做有限集,如图1所示含有无限个元素的集合叫做无限集,如图2所示9关于空集分析 不含任何元素的集合叫做空集,记作 空集是个特殊的集合,除了它本身的实际意义外,在研究集合、集合的运算时,必须予以单独考虑教学设计方案集合知识目标:(1)使学生初步理
11、解集合的概念,知道常用数集的概念及其记法 (2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义能力目标:(1)重视基础知识的教学、基本技能的训练和能力的培养;(2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力; 德育目标:激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神。教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:2
12、课时教 具:多媒体、实物投影仪教学过程:一、复习引入:1简介数集的发展,复习最大公约数和最小公倍数,质数与和数;2教材中的章头引言;3集合论的创始人康托尔(德国数学家);4“物以类聚”,“人以群分”;5教材中例子(P4)。二、讲解新课: 阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念(例子见书):1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合。(2)元素:集合中每个对象叫做这个集合的元素。2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合。记作N(2)正整数集:非负整
13、数集内排除0的集。记作N*或N+(3)整数集:全体整数的集合。记作Z(4)有理数集:全体有理数的集合。记作Q(5)实数集:全体实数的集合。记作R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。(2)非负整数集内排除0的集。记作N*或N+ 、Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作aA;(2)不属于:如果a不是集合A的元素,就说a不属于A,记作 4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。(2)
14、互异性:集合中的元素没有重复。(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)注:1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q元素通常用小写的拉丁字母表示,如a、b、c、p、q2、“”的开口方向,不能把aA颠倒过来写。练习题1、教材P5练习2、下列各组对象能确定一个集合吗?(1)所有很大的实数。 (不确定)(2)好心的人。 (不确定)(3)1,2,2,3,4,5(有重复)阅读教材第二部分,问题如下:1集合的表示方法有几种?分别是如何定义的?2有限集、无限集、空集的概念是什么?试各举一例。(二)集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的
15、方法。例如,由方程 的所有解组成的集合,可以表示为-1,1注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:51,52,53,100所有正奇数组成的集合:1,3,5,7,(2)a与a不同:a表示一个元素,a表示一个集合,该集合只有一个元素。描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。格式:xA| P(x) 含义:在集合A中满足条件P(x)的x的集合。例如,不等式 的解集可以表示为: 或 所有直角三角形的集合可以表示为: 注:(1)在不致混淆的情况下,可以省去竖线及左边部分。 如:直角三角形;大于104的实数(2)错误表示法:实数集
16、;全体实数3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法。注:何时用列举法?何时用描述法?(1) 有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法。如:集合 (2) 有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法。如:集合 ;集合1000以内的质数注:集合 与集合 是同一个集合吗?答:不是。集合 是点集,集合 = 是数集。(三) 有限集与无限集1、 有限集:含有有限个元素的集合。2、 无限集:含有无限个元素的集合。3、 空集:不含任何元素的集合。记作,如: 练习题:1、P6练习2、用描述法表示下列集合1,4,7,10,13 -2,-
17、4,-6,-8,-10 3、用列举法表示下列集合xN|x是15的约数 1,3,5,15(x,y)|x1,2,y1,2 (1,1),(1,2),(2,1)(2,2)注:防止把(1,2)写成1,2或x=1,y=2 -1,1 (0,8)(2,5),(4,2) (1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)三、小 结:本节课学习了以下内容:1集合的有关概念:(集合、元素、属于、不属于、有限集、无限集、空集)2集合的表示方法:(列举法、描述法、文氏图共3种)3常用数集的定义及记法四、课后作业:教材P7习题1.1五、板书设计:课题一、知识点(一)(
18、二)例题:12 六、课后反思: 本节课在教学时主要教会学生学习集合的表示方法,在认识集合时,应从两方面入手:(1)元素是什么?(2)确定集合的表示方法是什么?表示集合时,与采用字母名称无关。悖 论悖论就是自相矛盾的命题,如果承认它是正确的,则可以推出它是错误的。而如果承认它是错误的,又能推出它是正确的。 也许你会说,哪里会有这样的事呀!如果真是这样,世界还不闹得一团糟!让我们看一看下面这个小问题,你就会明白了。在一个村子里,只有一位理发师。他为自己定下了这样一条规矩:“我只为那些不给自己刮胡子的人刮胡子”。那么理发师是否给自己刮胡子呢?现在我们假设理发师可以给自己刮胡子,那么他就成“给自己刮胡
19、子的人”。而按照他的规矩是不能给“自己刮胡子的人”刮胡子的,所以他不能给自己刮胡子。反之,如果理发师不给自己刮胡子,他就成为“不给自己刮胡子的人”。而按规矩他应该给“不自己刮胡子的人”刮胡子,因此他又应该给自己刮胡子。自作聪明的理发师,为自己制定了进退两难的规矩。也许你会问,这是怎么回事?事实上,这个问题也不是我的发明。它是由19世纪数学家希尔伯特提出的著名的“理发师悖论”。这一悖论的提出,指出康托尔集合论的理论基础的不足之处,促进了集合论的发展。所以悖论的提出并不可怕,它只是表明数学理论的基础缺乏完备性。只要完善理论基础,就可以避免悖论的产生。康托尔Kangtuoer康托尔,G.(F.P.)
20、Georg Ferdinand Philip Cantor (18451918)德国数学家,集合论的创始者。1845年3月3日生于圣彼得堡(今苏联列宁格勒),1918年1月6日病逝于哈雷。其父为迁居俄国的丹麦商人。康托尔11岁时移居德国,在德国读中学。1862年17岁时入瑞士苏黎世大学,翌年转入柏林大学,主修数学,从学于E.E.库默尔、K.(T.W.)外尔斯特拉斯和L.克罗内克。1866年曾去格丁根学习一学期。1867年在库默尔指导下以数论方面的论文获博士学位。1869年在哈雷大学通过讲师资格考试,后即在该大学任讲师,1872年任副教授,1879年任教授。大学期间康托尔主修数论,但受外尔斯特拉
21、斯的影响,对数学推导的严格性和数学分析感兴趣。哈雷大学教授H.E.海涅鼓励他研究函数论。他于1870、1871、1872年发表三篇关于三角级数的论文。在1872年的论文中提出了以基本序列(即柯西序列)定义无理数的实数理论,并初步提出以高阶导出集的性质作为对无穷集合的分类准则。函数论研究引起他进一步探索无穷集和超穷序数的兴趣和要求。1872年康托尔在瑞士结识了J.W.R.戴德金,此后时常往来并通信讨论。1873年他估计,虽然全体正有理数可以和正整数建立一一对应,但全体正实数似乎不能。他在1874年的论文关于一切实代数数的一个性质中证明了他的估计,并且指出一切实代数数和正整数可以建立一一对应,这就
22、证明了超越数是存在的而且有无穷多。在这篇论文中,他用一一对应关系作为对无穷集合分类的准则。在整数和实数两个不同的无穷集合之外,是否还有更大的无穷?从1874年初起,康托尔开始考虑面上的点集和线上的点集有无一一对应。经过三年多的探索,1877年他证明了维形体的点和线上的点可以有一一对应。他说,“我见到了,但我不相信。”这似乎抹煞了维数的区别。论文于1878年发表后引起了很大的怀疑。P.D.G.杜布瓦雷蒙和克罗内克都反对,而戴德金早在1877年7月就看到,不同维数空间的点可以建立不连续的一一对应关系,而不能有连续的一一对应。此问题直到1910年才由L.E.J.布劳威尔给出证明。康托尔在1878年这
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高一数学教案 集合 函数 数学教案
链接地址:https://www.31ppt.com/p-4048147.html