第十一章 DNA的生物合成课件.ppt
《第十一章 DNA的生物合成课件.ppt》由会员分享,可在线阅读,更多相关《第十一章 DNA的生物合成课件.ppt(52页珍藏版)》请在三一办公上搜索。
1、第六章基因突变与DNA的损伤与修复,作为一种能决定生命状态存在和延续的生物大分子,DNA在遗传过程中必需保持高度的精确性和完整性,而且这种性能是细胞中任何一种分子都无法与之相比的。尽管如此,在DNA复制过程中,仍难免会存在少量未被校正的差错。此外,DNA还会受到各种物理和化学因素的损伤。这些差错和损伤如果不被修复,将会,产生严重的细胞学后果,因为DNA分子本身是无法替代的,一个细胞通常只有1-2套基因组DNA,而不像蛋白质和RNA分子那样,能利用DNA中的遗传信息不断产生新的分子来替代受损伤的分子。所以,维护DNA遗传信息的稳定性对生物细胞来说是极其重要的。在漫长的生命进化过程中,生物体不仅演
2、化出能纠正,复制错误的“校正”系统,而且在细胞中形成了多种多样的DNA修复系统,能对各种DNA的损伤进行修复,恢复DNA正常的超螺旋结构,以保持每个世代遗传信息的稳定性。极少数不能修复的DNA损伤将会导致基因的突变,其中一部分突变将有利于物种的进化,而另一部分突变将导致细胞发生变异和死亡。,一、DNA的损伤,由自发的或环境的因素引起DNA一级结构的任何异常的改变称为DNA的损伤。常见的DNA的损伤包括碱基脱落、碱基修饰、交联,链的断裂,重组等。,(一)引起DNA损伤的因素:1自发因素:1)脱嘌呤和脱嘧啶 在生理条件下,DNA分子通过自发水解经常发生脱嘧啶和脱嘌呤反应,使嘌呤碱和嘧啶碱从DNA分
3、子的脱氧核糖-磷酸骨架上脱落下来。例如,在腺嘌呤和鸟嘌呤的N-9及脱氧核糖C-1之间的N-糖苷键常发生自发水解反应而断裂,从而失去嘌呤碱基,使该嘌呤碱基所编码的遗传信息丢失。Lindahl估计,一个哺乳动物,细胞在37条件下,20小时内通过自发水解可从DNA链上脱落约10000个嘌呤碱和500个嘧啶碱。在一个长寿命的非复制的哺乳动物细胞(如人的神经细胞)的整个生活中自发脱嘌呤数约为108个嘌呤碱,它们占细胞DNA中总嘌呤数的3%。每个细胞每小时脱去的嘌呤碱和嘧啶碱分别约为580个和29个。自发脱嘧啶反应一般频率很低。,2)碱基的脱氨基作用 碱基中的胞嘧啶(C)、腺嘌呤(A)和鸟嘌呤(G)都含有
4、环外氨基,氨基有时会自发脱落,从而使胞嘧啶变为尿嘧啶(U),腺嘌呤变为次黄嘌呤(I),鸟嘌呤变为黄嘌呤(X)。这些脱氨基产物的配对性质与原来的碱基不同,即U与A配对,I和X均与C配对。而且DNA复制时,它们将会在子链中产生错误而导致DNA损伤。例如,胞嘧啶自发水解脱氨变成尿,嘧啶后,如果未被修复,产生的尿嘧啶会在接下来的复制中与腺嘌呤配对,从而产生点突变。DNA分子以这种方式产生尿嘧啶很可能就是DNA含有胸腺嘧啶而不是尿嘧啶的原因。因为这样可使DNA分子中发现的任何尿嘧啶,均可被一种称为尿嘧啶DNA糖化酶所切除,并由胞嘧啶所替代。胞嘧啶自发脱氨基成为尿嘧啶的频率估计约为每小时每个细胞8次,即每
5、天每个细胞192次。,3)碱基的互变异构 DNA中的四个碱基都可能自发地使氢原子改变位置而产生互变异构体,从而使碱基的配对形式发生改变。如腺嘌呤的稀有互变异构体与胞嘧啶配对,胸腺嘧啶的稀有互变异构体与鸟嘌呤配对。当DNA复制时,如果模板链上存在着这样形式的互变异构体,在子链上就可以产生错误,造成DNA损伤。例如稀有碱基腺嘌呤和胞嘧啶,或稀有碱基胸腺嘧啶与,鸟嘌呤形成氢键,便可导致下一世代中G-C配对取代A-T配对(图6-1)。4)细胞正常代谢产物对DNA的损伤 在所有需氧细胞中,细胞呼吸作用产生的副产物超氧阴离子(O2-)和H2O2非常活跃,由于这些超氧化物、氢过氧化物及羟基自由基(OH)等活
6、性氧的存在,导致DNA在正常条件下发生氧化损伤。这些自由基可在许多位点上攻击DNA,产生一系列特性变化了的氧化产物,,如8-氧化鸟嘌呤,2-氧化腺嘌呤和5-羟甲基尿嘧啶等(见图6-2)。而且电离辐射引起水分解所产生的羟基自由基,会提高这些氧化产物的水平。氧自由基对DNA的损伤是由金属离子,尤其是铁离子所介导的,因此,螯合剂、自由基清除剂、超氧化物歧化酶、二氧化物酶和过氧化物酶活力的增强,都能降低氧自由基的毒性。,此外,葡萄糖和6-磷酸葡萄糖,可能还有其他的糖分子也能和DNA反应,产生明显的结构和生物学改变,这些改变的累积可导致细胞老化。除上述自发性损伤外,DNA分子还会自发产生单链断裂、链间交
7、联和形成一些甲基加合物等。,2物理因素:由紫外线、电离辐射、X射线等引起的DNA损伤。其中,X射线和电离辐射常常引起DNA链的断裂,而紫外线常常引起嘧啶二聚体的形成,如TT,TC,CC等二聚体。这些嘧啶二聚体由于形成了共价键连接的环丁烷结构,因而会引起复制障碍。,3化学因素:(1)脱氨剂:如亚硝酸与亚硝酸盐,可加速C脱氨基生成U,A脱氨基生成I。,(2)烷基化剂:这是一类带有活性烷基的化合物,可提供甲基或其他烷基,引起碱基或磷酸基的烷基化,甚至可引起邻近碱基的交联。(3)DNA加合剂:如苯并芘,在体内代谢后生成四羟苯并芘,与嘌呤共价结合引起损伤。(4)碱基类似物:如5-FU,6-MP等,可掺入
8、到DNA分子中引起损伤或突变。(5)断链剂:如过氧化物,含巯基化合物等,可引起DNA链的断裂。,二、DNA损伤的修复,人们对DNA的修复机理进行了深入研究,发现在生物体内存在多种修复途径,如能纠正复制错误的尿嘧啶N糖基修复酶系统和错配修复系统,以及能修复环境因素和体内化学物质造成DNA分子损伤的光复活修复系统、切除修复系统、重组修复系统和SOS修复系统等。DNA分子的双螺旋结构是其损伤修复的重要基础,因为DNA的互补双链可保证其一股链上的损伤被切除后,能从另一股链上获得修复所需要的信息。,(一)直接修复:1光复活:(light repairing):这是一种广泛存在的修复作用。光复活能够修复任
9、何嘧啶二聚体的损伤。其修复过程为:光复活酶(photo-lyase)识别嘧啶二聚体并与之结合形成复合物在300600nm可见光照射下,酶获得能量,将嘧啶二聚体的丁酰环打开,使之完全修复光复活酶从DNA上解离。,2断裂链的重接:DNA断裂形成的缺口,可以在DNA连接酶的催化下,直接进行连接而封闭缺口。3直接插入嘌呤当DNA链上的嘌呤碱基受到损伤时,常会被糖基化酶水解脱落生成无嘌呤位点(apurinic site,AP位点)。近年来人们发现一种酶能对这种损伤进行直接修复,这种酶被称为DNA嘌呤插入酶(insertase)。此酶首先与无嘌呤位点相结合,并在K 存在下催化游离的嘌呤碱基或脱氧核苷与DN
10、A无嘌呤部位形成糖苷键。,而且插入酶所插入的碱基具有高度的专一性,例如,在双链DNA中与C相对应的AP位点上,插入酶只催化G插入,而在与T相对应的AP位点上,插入酶只催化A 插入。插入酶的这种专一性保证了遗传信息的正确修复和遗传的稳定性,而且嘌呤插入酶的存在预示着很可能还存在一种能催化嘧啶碱基直接插入到DNA链中嘧啶缺失位点的酶。,4烷基转移修复 在转甲基酶的催化下,将DNA上的被修饰的甲基去除。此时,转甲基酶自身被甲基化而失活。,(二)切除修复(excision repairing):这也是一种广泛存在的修复机制,可适用于多种DNA损伤的修复。该修复机制可以分别由两种不同的酶来发动,一种是核
11、酸内切酶,另一种是DNA糖苷酶。,(三)、错配修复DNA复制是一个高保真过程,但其正确性毕竟不是绝对的,复制产物中仍会存在少数未被校出的错配碱基。通过对错配碱基的修复将使复制的精确性提高102-103倍。现已在大肠杆菌、酵母和哺乳动物中都发现了错配修复系统。复制,错配中的错配碱基存在于新合成的子代链中,错配修复是按模板的遗传信息来修复错配碱基的。因此,该修复系统必须有一种能在复制叉通过之后识别模板链与新合成 DNA链的机制,以保证只从新合成的DNA链中去除错配碱基。在大肠杆菌中主要通过对模板链的甲基化来区分新合成的DNA链。大肠杆菌中存在一种Dam甲基化酶,它通常首先对DNA模板链,的5-GA
12、TC序列中腺嘌呤的N6位置进行甲基化,当复制完成后,在短暂的时间内(几秒或几分钟),只有模板链是甲基化的,而新合成的链是非甲基化的。正是子代DNA链中的这种暂时半甲基化,可以作为一种链的识别标志,以区别模板链和新合成的链,从而使存在于GATC序列附近的复制错配将按亲代链为模板进行修复。几分钟后新合成链也将在Dam,甲基化酶作用下被甲基化,从而成为全甲基化DNA。一旦两条链都被甲基化,这种错配修复过程几乎不再发生。由于甲基化DNA成为识别模板链和新合成链的基础,且错配修复发生在GATC的邻近处,故这种修复也称为甲基指导的错配修复(methyl-directed mismatch repair)。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第十一章 DNA的生物合成课件 第十一 DNA 生物 合成 课件

链接地址:https://www.31ppt.com/p-4044165.html