复合函数的单调性例.doc
《复合函数的单调性例.doc》由会员分享,可在线阅读,更多相关《复合函数的单调性例.doc(7页珍藏版)》请在三一办公上搜索。
1、复 合 函 数 的 单 调 性 例 讲山西忻州五寨一中 摄爱忠高考主要考查:求复合函数的单调区间;讨论含参复合函数的单调性或求参数范围问题“中间变量”是形成问题转化的桥梁. 函数思想是解决问题的关键复合函数定义:1. 设定义域为,的值域为,若,则关于的函数叫做函数 与的复合函数,叫中间变量外函数:; 内函数:复合函数的单调性:同增异减.2.若则增函数增函数增函数减函数减函数增函数增函数减函数减函数减函数增函数减函数3.求解复合函数的单调性的步骤如下:(1)求复合函数定义域;(2)将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);(3)判断每个常见函数的单调性;(4)将中间变量的取值
2、范围转化为自变量的取值范围;(5)求出复合函数的单调性。题型1:内外函数都只有一种单调性的复合型. 例 题1:已知函数y=loga(2-ax)在0,1上是x的减函数,则a的取值范围是( )(A).(0,1) (B).(1,2) (C).(0,2) (D).2,+)解:设y= logau,u=2-ax,a是底数,所以a0, 函数y=loga u在u0,1上是减函数,而u=2-ax在区间x0,1上是减函数, y= logau是u(0, +)上的增函数,故a1,还要使2-ax0在区间上总成立,令g(x)= 2-ax,由 ,解得a2,1a0知函数的定义域为,因y= log0.5u在u(0,+)上是减函
3、数,而u= x2+4x+4在x(-,-3)上是减函数,在(-1,+ )上是增函数,根据复合规律知,函数y=log0.5(x2+4x+4) 在x(-,-3)上是增函数;在x(-1,+ )上是减函数. 变式训练:讨论函数 的单调性。 解:函数定义域为R. 令u=x2-4x+3,y=0.8u。 指数函数在u(-,+)上是减函数, u=x2-4x+3在(-,2上是减函数,在2,+)上是增函数, 函数在(-,2上是增函数,在2,+)上是减函数。 这里没有第四步,因为中间变量允许的取值范围是R,无需转化为自变量的取值范围。 题型3:外函数有两种单调性内函数有一种单调性的复合型. 例 题3: 函数y=2si
4、n( -2x)的单调递增区间是( )(A). (B). (C). (D). 解:令y=sinu,u= -2x,u= -2x 是R上的减函数,而y=sinu在u 2k+ ,2k+(kZ)上单调递减,根据函数单调性的复合规律,令2k+ -2x2k+ 得: 当k=0时, , 故选(A) . 例 题4:讨论函数y=(log2x)2+log2x的单调性. 解:显然函数定义域为(0,+). 令 u=log2x,y=u2+u u=log2x在(0,+)上是增函数, y=u2+u在(-,上是减函数,在,+)上是增函数【注意】:(-,及,+)是u的取值范围.令,则0x,(u log2x x) 所以y=(log2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 复合 函数 调性
链接地址:https://www.31ppt.com/p-4043474.html