单相全控桥式晶闸管整流电路设计(纯电阻负载).doc
《单相全控桥式晶闸管整流电路设计(纯电阻负载).doc》由会员分享,可在线阅读,更多相关《单相全控桥式晶闸管整流电路设计(纯电阻负载).doc(20页珍藏版)》请在三一办公上搜索。
1、1 单相桥式全控整流电路的功能要求及设计方案介绍1.1 单相桥式全控整流电路设计方案1.1.1 设计方案图1设计方案1.1.2 整流电路的设计 主电路原理图及其工作波形 图2 主电路原理图及工作波形 主电路原理说明:(1)在u2正半波的()区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。因此在0区间,4个晶闸管都不导通。(2)在u2正半波的()区间,在时刻,触发晶闸管VT1、VT4使其导通。(3)在u2负半波的()区间,在间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。(4)在u2负半波的()区
2、间,在时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿bVT3RVT2T的二次绕组b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。2 触发电路的设计2.1 晶闸管触发电路触发电路在变流装置中所起的基本作用是向晶闸管提供门极电压和门极电流,使晶闸管在需要导通的时刻可靠导通。根据控制要求决定晶闸管的导通时刻,对变流装置的输出功率进行控制。触发电路是变流装置中的一个重要组成部分,变流装置是否能正常工作,与触发电路有直接关系,因此,正确合理地选择设计触发电路及其各项技术指标是保证晶闸管变流装置安全,可靠,经济运行的前提。,开始启动A/D转
3、换;在A/D转换期间,START应保持低电平。2.1.1 晶闸管触发电路的要求晶闸管触发主要有移相触发、过零触发和脉冲列调制触发等。触发电路对其产生的触发脉冲要求:()触发信号可为直流、交流或脉冲电压。()触发信号应有足够的功率(触发电压和触发电流)。 ()触发脉冲应有一定的宽度,脉冲的前沿尽可能陡,以使元件在触发导通后,阳极电流能迅速上升超过掣住电流而维持导通。 ()触发脉冲必须与晶闸管的阳极电压同步,脉冲移相范围必须满足电路要求。(5)、为使并联晶闸管能同时导通,触发电路应能产生强触发脉冲。强触发电流幅值为出发电流的倍左右,脉冲前沿的陡度取为晶闸管触发电路应满足下列要求(1) 触发脉冲的宽
4、度应该保证晶闸管的可靠导通,对感性和反电动势负载的变流器采用宽脉冲或脉冲列触发,对变流器的启动,双星型带平衡电抗器电路的触发脉冲应该宽于30,三相全控桥式电路应小于60或采用相隔60的双窄脉冲。(2) 脉冲触发应有足够的幅度,对户外寒冷场合,脉冲电流的幅度应增大为器件最大触发电流的35倍,脉冲前沿的陡度也要增加。一般需达1-2A/us(3) 所提供的触发脉冲不应超过晶闸管门极的电压、电流和额定功率,且在门极伏安特性的可靠触发区域之内。(4)应有良好的抗干扰性能、温度稳定性及主电路的电气隔离。 2.1.2 锯齿波的触发电路图3 同步信号为锯齿波的触发电路电路输出可为双窄脉冲(适用于有两个晶闸管同
5、时导通的电路),也可为单窄脉冲。三个基本环节:脉冲的形成与放大、锯齿波的形成和脉冲移相、同步环节。此外,还有强触发和双窄脉冲形成环节。脉冲形成环节: 由晶体管V4、V5组成,V7、V8起脉冲放大作用。 控制电压uco加在V4基极上。电路的触发脉冲由脉冲变压器TP二次侧输出,其一次绕组接在V8集电极电路中。 脉冲前沿由V4导通时刻确定,脉冲宽度与反向充电回路时间常数R11C3有关。锯齿波的形成和脉冲移相环节: 锯齿波电压形成的方案较多,如采用自举式电路、恒流源电路等,本电路采用恒流源电路。 恒流源电路方案由V1、V2、V3和C2等元件组成,其中V1、VS、RP2和R3为一恒流源电路同步环节:触发
6、电路与主电路的同步是指要求锯齿波的频率与主电路电源的频率相同且相位关系确定。 锯齿波是由开关V2管来控制的,V2开关的频率就是锯齿波的频率由同步变压器所接的交流电压决定。V2由导通变截止期间产生锯齿波锯齿波起点基本就是同步电压由正变负的过零点。V2截止状态持续的时间就是锯齿波的宽度取决于充电时间常数R1C1。双窄脉冲形成环节: 内双脉冲电路:每个触发单元的一个周期内输出两个间隔60的脉冲的电路。V5、V6构成一个“或”门,当V5、V6都导通时,V7、V8都截止,没有脉冲输出。只要V5、V6有一个截止,都会使V7、V8导通,有脉冲输出。 第一个脉冲由本相触发单元的uco对应的控制角a产生。隔60
7、的第二个脉冲是由滞后60相位的后一相触发单元产生(通过V6)。 在三相桥式全控整流电路中,器件的导通次序为VT1-VT2-VT3-VT4-VT5-VT6,彼此间隔60,相邻器件成双接通,所以某个器件导通的同时,触发单元需要给前一个导通的器件补送一个脉冲。 最终输出的脉冲波形为: 图4 最终输出的脉冲波形锯齿波同步触发脉冲不受电网电压波动与波形畸变的直接影响,抗干扰能力强,而且移相范围宽。(所以我选取该触发器做设计。)3 保护电路的设计在电力电子电路中,除了电力电子器件参数选择合适、驱动电路设计, 采用合适的过电压、过电流、du/dt保护和di/dt 保护也是必要的。3.1 过电压保护电力电子装
8、置中可能发生的过电压分为外因过电压和内应过电压两类。外因过电压主要来自雷击和系统中的操作过程等外部原因,包括:(1)操作过电压:由分闸、合闸等开关操作引起的过电压,快速直流开关的切断等经常性操作中的电磁过程引起的过压。(2)雷击过电压:由雷击引起的过电压。内因过电压主要来自电力电子装置内部器件的开关过程,包括:(1)换相过电压:由于晶闸管或者全控器件反并联的续流二极管在换相结束后不能立刻恢复阻断能力,因而有较大的反向电流流过,使残存的载流子恢复,当其恢复了阻断能力时,反向电流急剧减小,这样的电流突变会因线路电感而在晶闸管阴阳极之间或与续流二极管反并联的全控型器件两端产生过电压。(2)关断过电压
9、:全控型器件在较高的频率下工作,当器件关断时,因正向电流的迅速降低而由线路电感在器件两端感应出的过电压。过压保护要根据电路中过压产生的不同部位,加入不同的保护电路,当达到定电压值时,自动开通保护电路,使过压通过保护电路形成通路,消耗过压储存的电磁能量,从而使过压的能量不会加到主开关器件上,保护了电力电子器件。为了达到保护效果,可以使用阻容保护电路来实现。将电容并联在回路中,当电路中出现电压尖峰电压时,电容两端电压不能突变的特性,可以有效地抑制电路中的过压。与电容串联的电阻能消耗掉部分过压能量,同时抑制电路中的电感与电容产生振荡,过电压保护电路如图5所示。图5 过电压保护电路3.2过电流保护晶闸
10、管承受过电流的能力很低,若过电流数值较大且时间较长,则晶闸管会因热容量小而产生热击穿损坏。为了使晶闸管不受损坏,必须设置过流保护,使晶交流侧自动开关或直流侧接触器跳闸。其动作时间约为100200ms,因此只能保护因机械过负载而引起的过电流,或在短路电流不大时,对晶闸管起保护作用。(1)直流快速开关对于大容量高功率经常容易短路的场合,可采用动作时间只有2ms的直流快速开关。它的断弧时间仅有2530ms,装在直流侧可有效的用于直流侧的过载保护与短路保护。它经特殊的设计,可以先于快速熔断器熔断而保护晶闸管。但此开关昂贵复杂,使用不多。快速熔断器闸管在被损坏之前就迅速切断电流,并断开桥臂中的故障元件,
11、以保护其他元件。晶闸管过流保护措施有以下几种。(2)交流短路器交流短路器的作用是当过电流超过其整定值时动作,切断变压器一次侧交流电路,使变压器退出运行。短路器动作时间较长,约为100200ms。晶闸管不能在这样长的时间里承受过电流,故它只能作为变流装置的后备保护。(3)进线电抗器进线电抗器串接在变流装置的交流进线侧,以限制过电流。其缺点是有负载时会产生较大的压降,增加了线路损耗。 (4)电流继电器过电流继电器可安装在直流侧或交流侧,在发生过电流时动作,使熔断器是最简单有效的且应用普遍的过流保护器件。针对晶闸管的特点,专门设计了快速熔断器,简称快熔。其熔断时间小于20ms,能很快的熔断,达到保护
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 单相 全控桥式 晶闸管 整流 电路设计 电阻 负载
链接地址:https://www.31ppt.com/p-4038441.html