勾股定理应用综合题汇编.doc
《勾股定理应用综合题汇编.doc》由会员分享,可在线阅读,更多相关《勾股定理应用综合题汇编.doc(24页珍藏版)》请在三一办公上搜索。
1、勾股定理应用综合题汇编一解答题(共29小题)1如图所示,缉毒警方在基地B处获知有贩毒分子分别在P岛和M岛进行毒品交易后,缉毒艇立即出发,已知甲艇沿北偏东60方向以每小时40海里的速度前进,乙艇沿南偏东30方向以每小时30海里的速度前进,半小时后甲到M岛,乙到P岛,则M岛与P岛之间的距离是多少?2小明家有一块三角形菜地,量得两边长分别为80米,100米,第三边上的高为60米,请你帮小明计算这块菜地的面积3如图,一探险者在某海岛探宝,登陆后,先往东走了8千米,又往北走了2千米,又向西走了3千米,再又向北走了6千米,往东一拐,仅走了1千米就找到了宝藏,试问:他走的是最近的路吗?如果是,请求出这个路线
2、长;如果不是,请在图上画出最近的路线,并求出最近的路线长4如图,在笔直的某公路上有A、B两点相距50km,C、D为两村庄,DAAB于点A,CBAB于点B,已知DA=30km,CB=20km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?5如图,一艘渔政船从小岛A处出发,向正北方向以每小时20海里的速度行驶了1.5小时到达B处执行任务,再向正东方向以相同的速度行驶了2小时到达C处继续执行任务,然后以相同的速度直接从C处返回A处(1)分别求AB、BC的长;(2)问返回时比出去时节省了多少时间?6如图,一块草坪的形状为四边形ABCD,
3、其中B=90,AB=8m,BC=6m,CD=24m,AD=26m求这块草坪的面积7如图,斜坡AC=8米,CAD=30坡顶有一旗杆BC(旗杆与地面AD垂直),旗杆顶端B点与A点有一彩带AB相连,AB=10米试求旗杆BC的高度?(结果保留根号)8如图所示,在3米高的柱子顶端A处有一只老鹰,它看到一条蛇从距柱脚9米B处向柱脚的蛇洞C游来,老鹰立即扑下,如果它们的速度相等,问老鹰在距蛇洞多远处捉住蛇?(设老鹰按直线飞行)9如图,为修铁路需凿通隧道AC,测得A=50,B=40,AB=5km,BC=4km,若每天凿隧道0.3km,问几天才能把隧道凿通?10如图,在树上距地面10m的D处有两只猴子,它们同时
4、发现地面上C处有一筐水果,一只猴子从D处向上爬到树顶A处,然后利用拉在A处的滑绳AC滑到C处,另一只猴子从D处先滑到地面B,再由B跑到C,已知两猴子所经过的路程都是15m,求树高AB11如图所示,有高为3米,斜坡长为5米的楼梯表面铺地毯,那么地毯至少需要多少米?12(2008义乌市)如图,小明用一块有一个锐角为30的直角三角板测量树高,已知小明离树的距离为3米,DE为1.68米,那么这棵树大约有多高?(精确到0.1米,1.732)13(2005双柏县)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?14已知某开发区有一块四
5、边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量A=90,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?15某校把一块形状为直角三角形的废地开辟为生物园,如图所示,ACB=90,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?16印度数学家什迦逻(1141年1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅”请用学过的数学
6、知识回答这个问题17如图,小强在江南岸选定建筑物A,并在江北岸的B处观察,此时,视线与江岸BE所成的夹角是30,小强沿江岸BE向东走了500m,到C处,再观察A,此时视线AC与江岸所成的夹角ACE=60根据小强提供的信息,你能测出江宽吗?若能,写出求解过程(结果可保留根号);若不能,请说明理由18如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?19甲、乙两人在沙漠进行探险,某日早晨8:00甲先出发,他以6千米/时速度向东南方向
7、行走,1小时后乙出发,他以5千米/时速度向西南方向行走,上午10:00时,甲、乙两人相距多远?20如图是一个长方体盒子,棱长AB=3cm,BF=3cm,BC=4cm(1)连接BD,求BD的长;(2)一根长为6cm的木棒能放进这个盒子里去吗?说明你的理由21如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼梯上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?22在甲村至乙村的公路有一块山地正在开发现有一C处需要爆破已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CACB,如图所示为了安全起见,爆破点C周围半径250米
8、范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否需要暂时封锁?23如图,小丽荡秋千,秋千架高2.4米,秋千座位离地0.4米,小红荡起最高时,坐位离地0.8米此时小红荡出的水平距离是多少?(荡到秋千架两边的最高点之间的距离)24如图,将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为320cm,在无风的天气里,彩旗自然下垂,如图求彩旗下垂时最低处离地面的最小高度h彩旗完全展平时的尺寸如左图的长方形(单位:cm)25如图,一根竹竿在离地面5米处断裂,竹竿顶部落在离竹竿底部12米处,问竹竿折断之前有多长?26如图,要测一池塘两端A、B的距离,请你利用三角形知识设计一个测量方案要求:简
9、述测量方法;画出示意图(原图画);用你测量的数据(用字母表示)表示AB,并说明理由,说明:池塘周围在同一高度,并且比较平坦27有一块边长为24米的正方形绿地,如图所示,在绿地旁边B处有健身器材,由于居住在A处的居民践踏了绿地,小明想在A处树立一个标牌“少走米,踏之何忍”,请你计算后帮小明在标牌的填上适当的数字28如图,是一个长8m,宽6m,高5m的仓库,在其内壁的A(长的四等分点)处有一只壁虎,B(宽的三等分点)处有一只蚊子,则壁虎爬到蚊子处的最短距离为多少米29在ABC中,AB=AC(1)如图,若点P是BC边上的中点,连接AP求证:BPCP=AB2AP2;(2)如图,若点P是BC边上任意一点
10、,上面(1)的结论还成立吗?若成立,请证明、若不成立,请说明理由;(3)如图,若点P是BC边延长线上一点,线段AB,AP,BP,CP之间有什么样的数量关系?画出图形,写出你的结论(不必证明)答案与评分标准一解答题(共29小题)1如图所示,缉毒警方在基地B处获知有贩毒分子分别在P岛和M岛进行毒品交易后,缉毒艇立即出发,已知甲艇沿北偏东60方向以每小时40海里的速度前进,乙艇沿南偏东30方向以每小时30海里的速度前进,半小时后甲到M岛,乙到P岛,则M岛与P岛之间的距离是多少?考点:勾股定理的应用。分析:根据条件可以证得BMN是直角三角形,求得BP与BM的长,根据勾股定理即可求得MP的长解答:解:根
11、据条件可知:BP=30=15(海里),BM=40=20(海里)MBP=1806030=90,BPM是直角三角形,MP=25(海里)答:M岛与P岛之间的距离是25海里点评:本题主要考查了勾股定理,正确证明BPM是直角三角形是解决本题的关键2小明家有一块三角形菜地,量得两边长分别为80米,100米,第三边上的高为60米,请你帮小明计算这块菜地的面积考点:勾股定理的应用。分析:要求面积,则要构成直角三角形,根据题意可画出草图此题需分两种情况讨论:(1)若ACB为钝角时,作BDAC交AC的延长线于D;(2)若ACB为锐角时,作BDAC交AC于D;两种情况下,分别利用勾股定理解直角三角形可求出ABC的高
12、,则面积可求解答:解:(1)如图,当ACB为钝角时,作BDAC交AC的延长线于D;,(2)若ACB为锐角时,作BDAC交AC于D;点评:本题考查了勾股定理的应用,解题的时候构建直角三角形是解题的关键,此题主要用到勾股定理解题3如图,一探险者在某海岛探宝,登陆后,先往东走了8千米,又往北走了2千米,又向西走了3千米,再又向北走了6千米,往东一拐,仅走了1千米就找到了宝藏,试问:他走的是最近的路吗?如果是,请求出这个路线长;如果不是,请在图上画出最近的路线,并求出最近的路线长考点:勾股定理的应用。专题:应用题。分析:求出一共向东和向北行走的距离,根据正东方向和正北方向成直角,利用勾股定理计算即可解
13、答:解:探险者向正东方向一共行走了:83+1=6千米,一共向正北方向行走了:2+6=8千米,正东方向与正北方向成直角,如图所示:由勾股定理得:最短路线=10千米,最短路线长为10千米点评:本题考查了勾股定理的应用,解题的关键是从中整理出直角三角形并正确的利用勾股定理进行计算,属于比较容易的考题4如图,在笔直的某公路上有A、B两点相距50km,C、D为两村庄,DAAB于点A,CBAB于点B,已知DA=30km,CB=20km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?考点:勾股定理的应用。专题:计算题。分析:可以设AE=x,则
14、BE=50x,在直角ADE中根据勾股定理可以求得DE,在直角BCE中根据勾股定理可以求得CE,根据CE=DE可以求得x的值,即可求得AE的值解答:解:设AE=x,则BE=50x,在直角ADE中,DE2=302+x2,在直角CBE中,CE2=202+(50x)2,解得x=20km,即AE=20km答:收购站E应建在离A点20km的位置点评:本题考查了勾股定理在直角三角形中的运用,本题中根据DE2=302+x2和CE2=202+(50x)2求x的值是解题的关键5如图,一艘渔政船从小岛A处出发,向正北方向以每小时20海里的速度行驶了1.5小时到达B处执行任务,再向正东方向以相同的速度行驶了2小时到达
15、C处继续执行任务,然后以相同的速度直接从C处返回A处(1)分别求AB、BC的长;(2)问返回时比出去时节省了多少时间?考点:勾股定理的应用。专题:计算题。分析:(1)根据小岛A处出发,以每小时20海里的速度和行驶的时间即可分别求出AB,BC的长;(2)根据勾股定理求出AC的长,然后根据“相同的速度”这一条件求出返回所用时间,再用总时间减去即可解答:解:(1)AB=201.5=30(海里),BC=202=40(海里);(2)在ABC中,ABC=90,由勾股定理得,(海里);返回时所用时间为:=2.5小时,出去时所用时间为:2+1.5=3.5小时,则返回时比出去时节省的时间为:3.52.5=1小时
16、答:(1)AB的长为:30海里;BC的长为:50海里;(2)问返回时比出去时节省了1小时点评:此题主要考查学生对勾股定理的应用这一知识点理解和掌握,比较简单,属于基础题6如图,一块草坪的形状为四边形ABCD,其中B=90,AB=8m,BC=6m,CD=24m,AD=26m求这块草坪的面积考点:勾股定理的应用;勾股定理的逆定理。专题:计算题。分析:连接AC,则ABC为直角三角形,AC为斜边,解直角ABC求AC,根据AC,AD,CD判定ACD为直角三角形,根据直角三角形面积计算可以计算该草坪的面积解答:解:连接AC,因为B=90,所以直角ABC中,由勾股定理得AC2=AB2+BC2AC2=82+6
17、2AC2=100AC=10 又CD=24 AD=26所以ACD中,AC2+CD2=AD2所以ACD是直角三角形所以S四边形ABCD=S四边形ABCD=12024=96(m2)答:该草坪的面积为96m2点评:本题考查了勾股定理在实际生活中的运用,考查了直角三角形面积计算,本题中正确的根据勾股定理的逆定理判定ACD是直角三角形是解题的关键7如图,斜坡AC=8米,CAD=30坡顶有一旗杆BC(旗杆与地面AD垂直),旗杆顶端B点与A点有一彩带AB相连,AB=10米试求旗杆BC的高度?(结果保留根号)考点:勾股定理的应用。专题:计算题。分析:如果延长BC交AD于E点,则CEAD,要求BC的高度,就要知道
18、BE和CE的高度,就要先求出AE的长度直角三角形ACE中有坡比,由AC的长,那么就可求出AE的长,然后求出BE、CE的高度,BC=BECE,即可得出结果解答:解:延长BC交AD于点E,则CEAD,CAD=30,AC=8,则CE=4,AE=4,(4分)在RtBAE中,BE=,(6分)所以BC=BECE=(24)米(8分)点评:本题考查了勾股定理的应用,两个直角三角形有公共的直角边,先求出公共边的解决此类题目的基本出发点8如图所示,在3米高的柱子顶端A处有一只老鹰,它看到一条蛇从距柱脚9米B处向柱脚的蛇洞C游来,老鹰立即扑下,如果它们的速度相等,问老鹰在距蛇洞多远处捉住蛇?(设老鹰按直线飞行)考点
19、:勾股定理的应用。专题:计算题。分析:根据题意可知,蛇和老鹰用的时间相同,速度相同,可知它们所走的路程相等,故知AD=BD,再在RtACD中,利用勾股定理可得关于x的一元二次方程,解即可解答:解:设CD=x,则BD=9x,而AD=BD,在RtACD中,AD2=AC2+CD2,32+x2=(9x)2,解得x=4 答:老鹰在距蛇洞4米处捉住蛇点评:本题考查了勾股定理的应用解题的关键是理解AD=BD9如图,为修铁路需凿通隧道AC,测得A=50,B=40,AB=5km,BC=4km,若每天凿隧道0.3km,问几天才能把隧道凿通?考点:勾股定理的应用。专题:应用题。分析:由题意知:A=50,B=40则C
20、为90,在直角ABC中,已知AB,BC根据勾股定理即可求AC,则需要天数为解答:解:A=50,B=40,C=90,AC2=AB2BC2=(3km)2AC=3km=10天10天才能将隧道凿通答:10天才能将隧道凿通点评:本题考查了勾股定理在实际生活中的应用,解本题的关键是正确的计算AC的长度10如图,在树上距地面10m的D处有两只猴子,它们同时发现地面上C处有一筐水果,一只猴子从D处向上爬到树顶A处,然后利用拉在A处的滑绳AC滑到C处,另一只猴子从D处先滑到地面B,再由B跑到C,已知两猴子所经过的路程都是15m,求树高AB考点:勾股定理的应用。专题:应用题。分析:RtABC中,B=90,则满足A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 应用 综合 汇编

链接地址:https://www.31ppt.com/p-4038116.html