现代物理学基础的思考之一——质量概念的发展历程.doc
《现代物理学基础的思考之一——质量概念的发展历程.doc》由会员分享,可在线阅读,更多相关《现代物理学基础的思考之一——质量概念的发展历程.doc(25页珍藏版)》请在三一办公上搜索。
1、 质量概念的发展历程 第一章 质量概念的提出 1、经典力学中质量概念的提出以牛顿第二定律所表现出的质量称为惯性质量.定义是给概念规定界限的判断,而定律是几个概念之间彼此的本质联系,它所反映的是客观规律牛顿第二定律正是这样的客观规律,它所反映的是力、质量和加速度这三者之间的本质联系.实际上,人们所以能总结出牛顿第二定律,就是因为人们预先就对力、质量和加速度这三个物理量的概念和测量方法已经有所掌握,然后才能通过实验找出它们之间的内在联系也就是说,质量的概念及测量方法并非来源于第二定律,而是先于这个定律第二定律建立过程的历史事实正是如此,早在牛顿第二定律建立之前,人们(包括牛顿)已经用“物质之量”给
2、质量下了定义,并已凭经验知道了通过比较重量来量度质量的方法.牛顿在其著作中说:“物质的量是质的量度,可由其密度与体积求出.”然而,质量没有定义之前又那来的密度?显然,牛顿这个定义等于没有说.“物质的量”往往是指物质多少或物质数量一类的东西,由相对性原理的制约,物质多少这样一个概念本身无法再进一步给以定义,物质的概念被认为是不说自明的.正是这个原因,在牛顿力学中寻找不到“物质的量”与惯性质量之间的任何联系,使得“物体所含物质越多,物体惯性越大”这条经验定律一直游离于物理学之外.也正是这个原因,物理学上的质量除了牛顿定律所赋予它的意义外不再有别的意思,质量乃是阻挠速度变化的量度.这又要回到用定律来
3、定义质量上来,让人很不满意. 2、横向质量与纵向质量问题约瑟夫汤姆孙在1881年承认一个带电的物体比一个没有带电的物体更难加速,因此静电能量表现成某种电磁质量,增加了物体的机械质量.之后威廉维恩(1900)和 Max Abraham (1902)认为一个物体的总共质量与它的电磁质量相同.因为电磁质量取决于电磁能量,维恩所提出的质能关系是.George Frederick Charles Searle 和汤姆孙也指出,电磁质量随着物体的速度而增加.亨德里克洛伦兹在他的洛伦兹以太理论的框架中承认这个说法.他将质量定义成所用力与加速度的比值而不是动量与速度的比值,因此他必须区分横向质量()(当物体运
4、动的方向与加速度相同或相反)和纵向质量()(当物体运动的方向与加速度垂直).只有当加速度与物体运动的方向垂直时,洛伦兹的质量才会等于现在被称作相对论性质量的质量.是洛伦兹因子,v是物体与以太的相对速度,c是光速).因此,根据这一理论没有物体可以到达光速,因为物体的质量将趋于无限大.而对于一个具有非零静质量的粒子在x方向运动时所受到的作用力和加速度的准确表达是:爱因斯坦在他1905年的论文中计算了横向质量和纵向质量,在他第一篇关于的论文中(1905),m所代表的是现在认为的静质量.在狭义相对论中,就像洛伦兹以太理论,一个静质量非零的物体无法以光速运动.当物体趋近于光速时,它的能量和动量将无限制的
5、增加.横向质量和纵向质量被相对论性质量的概念取代.Richard C. Tolman 在1912年表示m0(1 - v2/c2)-1/2最适合用来表示运动物体的质量.在1934年,Tolman也定义相对论性质量为:,这一定义对于所有粒子都适用,包括了以光速运动的粒子.对于以低于光速运动的粒子,即具有非零的静质量的粒子,这方程变成,当相对速度为零时,将等于1.当相对速度趋近光速时,将趋近无限大.在动量的方程中,m所代表的质量是相对论性质量牛顿第二定律以的形式表达仍然正确.但并不是零,因为相对论性质量是速率的函数,因此牛顿第二定律不能以来表示. 第二章 电磁质量概念的引入与发展 1、质量概念的发展
6、物理学家海森堡说:“为了理解现象,首要条件是引入适当的概念,我们才能真正知道观察到了什么.”在17、18世纪之际,物理学已经发展为以拉普拉斯为代表的、把力学视为物理学基础的“牛顿范式”,以傅里叶为代表的研究热、光、电磁现象的“非牛顿范式”两大学派.最早提出量纲理论的傅里叶就主张“物体的可量度的热效应的三个量k、h、c就都只涉及长度、时间、温度3个单位,重量单位可以省去”;1887年黑格姆出版的能论中主张“精密科学不必要引入有关原子假说的物理量,只应该使用能量、压力、温度等直接可观测的物理量来记述”;奥斯特瓦尔德发现催化现象不能用原子论解释后,于1893年出版的普通化学中阐述了他的能量世界图像,
7、“认为世界上一切现象都只是由于空间和时间中的能量的变化构成的,因此这三个量可以看做是最普遍的基本概念,一切能计量观察的事物都能归结为这些事物”.后来牛顿被称为“近代物理学鼻祖”的原因,就把质量M、长度L、时间T定为量纲式中三个最基本的物理量.在经典物理学理论中,长度L、时间T被认为是描述运动的“参量”,并不具有实质性的物理学意义;现代物理学已经根据“质能等价”的关系,在使用能量的单位eV逐渐取代质量的单位kg.(笔者注:现代物理学中的eV主要指电磁质量的能量,这正说明引力质量与电磁质量具有等价性.) 对宇观世界而言,质量M并不具有任何物理学意义:开普勒第三定律的数学表达式为R3/T2=K,这个
8、公式的物理学内涵是,任何一个天体的轨道运行,都只跟使用量纲式中L、T表述的空间结构R3/T2=K相关,而跟星体的质量M没有关系.航天实践告诉我们,只要进入离地面超过200km的空域,任何物体的自然运动都跟物体的质量M不再有任何关系.如果宇航员在舱外释放一个鸡蛋,它也肯定会跟飞船在同一的轨道上飞行.辐射能从粒子中放出后,粒子的质量M必有“亏损”;反之质量M将会增加;其当量关系为931MeV1.6610-27kg 这已经是核能应用中的常识.据此可知:1MeV的辐射能被储存在粒子的相空间所产生的静质量,就应该是1.78310-30kg;反之,物质系统“亏损”1.78310-30kg的静质量,空间中就
9、会增加1MeV的辐射能.质量和能量之间的当量关系是:1MeV1.78310-30kg.狄拉克依据“负能量海”理论预言:如果真空中有一个光子的能量E1.022MeV,就有可能被“负能量海”中的电子所吸收,“这个电子就会受到激发而越过禁区,跑到正能量区域表现为一个正能量的电子e,同时留下一个空穴则表现为一个正能量的正电子e”. “一个正能量的电子e”“一个正能量的正电子e”的静质量,已经不小于1.022MeV;那么,“正能量的电子e”的动能是从哪里来的呢?负电荷e从负能量海创生时,其质量并不遵从1MeV1.78310-30kg 的当量关系,而是遵从1MeV0.90810-30kg的当量关系.综合可
10、以肯定,微观世界的质量M就有两种:一种是仅有M效应的静质量,遵从1MeV1.78310-30kg 的当量关系;另一种是既有M效应、又有q效应的实体质量,遵从1MeV0.90810-30kg的当量关系.对于宏观世界,依据热功当量:1eV=1.6010-19J,可得1MeV=1.77810-30kgV2(或gR),必须注意:其前提条件是假定V2(或gR)=1.于是,宏观世界的质量m就不再是一个恒量,而成了一个随着其运动速度V不同、或者处在空间中的位置gR不同而变化的变量.综上所述,如果以1MeV的能量为基准,宏观世界的质量M是一个变量,它将随着质点运动的速度V或者是所处空间中的gR不同而变化.微观
11、世界能量跟质量存在两种当量关系:1MeV1.78310-30kg 和1MeV0.90810-30kg.恩格斯早就指出,牛顿力学根本不属于“物理学”范畴,自然科学以牛顿范式为典范的传统,错了!(笔者注:恩格斯时代的牛顿力学主要是研究引力质量,物理学主要是研究电磁质量.)2006年国际弦理论大会之前,在北京举办的中美高能物理未来合作研讨会上,李政道的报告认为,解决诸如质量起源、电荷本质、量子引力、基本粒子世代重复之谜等,必将引发新的物理学进展.实际上李政道先生揭示的是,在整个轻子方面可能存在着一个以前从未揭示过的分立对称性及其破坏,导致中微子相互作用的本真态和质量本真态相联系的映射矩阵与中微子的质
12、量矩阵之间建立起非常确定的联系.李政道的这项研究密切关系到质量起源的问题,意义非同寻常. 2、电子的电磁质量引入 (1)电子的机械运动和电磁运动 电子是原子核的一部分,电荷则是电磁场的场源.电子的电荷能激发一个电磁场,它也是电子自身的组成部分,于是电子是一个带电粒子与一个电磁场的统一体.带电粒子的运动是机械运动,电磁场的运动则是电磁运动,两者统一于“电子的运动”.电子论既然把一切物理运动归结为机械运动与电磁运动,也就把一切运动归结成为电子的运动.按照电动力学的原理,电子的带电粒子按照麦克斯韦方程不断激发电磁场,而电磁场则反过来以电磁力作用于带电粒子.电子的这两个组成部分随时都处于这样的相互作用
13、之中,这种相互作用乃是电子各种行为的内因,外力只有通过这种内因才能对电子起作用.于是电子不再是牛顿力学意义下的只能被动地接受外力作用的“力学粒子”,而是一种现实的、包括场与实物的对立于自身,因而处于永恒的、内部的、必然的、自己的运动之中的“电学粒子”了. (2)电子的电磁质量的引入 19世纪80年代,人们开始研究运动带电体问题.1878年罗兰发表运动电荷产生磁场的论文,激励人们从理论上进一步推测:由于磁场具有能量,驱使带电体运动,比驱使不带电体运动,一定要做更多的功,因为有一部分能量要用于建立新的磁场.所以,带电体的动能要比不带电体大.换句话说,带电动体的质量要比不带电动体大.这个由于电磁作用
14、产生的“视在”质量,也叫电磁质量. 最先提出这个问题的是J.J.汤姆生.电子的电磁质量问题在发现相对论前后一段时间比较引人注意,这个问题牵涉到电子的结构. 物理学家一直试图将电磁质量作为电子静止质量的一部分,例如质子和中子的带电状态不同,它们的质量有很小的差别,质量的这一微小差别很可能是由带电状态不同造成的. 20世纪之初,杰出的先辈科学家非常重视对于电子内部结构的研究.电子论的创立者洛伦兹大师在1902年12月11日著名演讲中提出了“电子的表观质量、有效质量和有可能没有真实质量问题”.【1】 参考文献: 【1】荷兰洛伦兹,诺贝尔奖获得者演讲集.物理学第一卷M. 北京:科学出版社. 1985.
15、24. 3、经典电动力学对于电子电磁质量的计算在经典电动力学中,认为带电粒子携带了电磁自场,由于自场有内聚能(电磁自能),也会构成电磁质量,实验所测量的带电粒子的质量(称为粒子的物理质量),是粒子原有质量m0(通常称为裸质量)与之和.因为带电粒子总是同它的自场联系在一起,所以两者是不可分离的.“ 经典电动力学计算一个半径为R,带电量为Q的均匀球体的静电自能为W自=0.5udv=3Q2/(200R).一个电子的库仑场的能量为w=(0/2)re(e/40r2)24r2dr,量子电动力学根据电磁场的能量计算电子的电磁质量,然后设电子的质量全部来源于电磁质量,计算出电子的半径a=2.810-15米(1
16、).同样设电子的电荷在半径a的球中有一定的分布也可得电磁质量,结果类似.但要维持这种平衡,需要未知的非电磁力平衡,实验还无法验证.在相对论发现后有理由认为电子的电磁质量是电子引力质量的3/4,其余的与某种非电磁力有关.H.Poincare.Rend.Pol.21(1906)129.他作了一些尝试,但也未具体地说明用什么别的力可以使电子不分裂.已知电子在真空中单位体积内的电场能为: (1) 又知道,点电荷的场强为: (2) 我们将电场强度E带入式(1)之中,就可以得出: (3). 于是,我们可以求出电子在整个空间范围上的电场能 就可以对于上式求定积分,并得出: (5)在1881年的一篇论文中,汤
17、姆生首次用麦克斯韦电磁理论分析了带电体的运动.他假设带电体是一个半径为a的导体球,球上带的总电荷为e,导体球以速度v运动,得到由于带电而具有的动能为,其中m为磁导率.这就相当于在力学质量m0之外,还有一电磁质量 . 1889年亥维赛改进了汤姆生的计算,得.他推导出运动带电体的速度接近光速时,总电能和总磁能都随速度增加.还得出一条重要结论,当运动速度等于光速时,能量值将为无穷大,条件是电荷集中在球体的赤道线上.1897年,舍耳(G.F.CSearle)假设电子相当于一无限薄的带电球壳,计算出快速运动的电子电磁质量为: ,其中. 经典电子论最著名的人物是 H. A. Lorentz (1853-1
18、928), 他是一位经典物理学的大师.洛仑兹与阿伯拉罕等物理学家曾提出这种假设:电子质量可能完全是电磁的,即电子裸质量m0=0,电子的惯性就是它电磁自场的惯性.这样,在电荷按体积均匀分布的假设下,由经典理论算出的电子半径值为ro=2.8210-13cm,电子半径实验值小于10-18cm,显然用经典理论算出的电子半径并不合符实际. 1903年,阿伯拉罕(M.Abraham)把电子看成完全刚性的球体,根据经典电磁理论,推出如下关系: ,其中m0为电子的静止质量.现代物理学已经证明电子没有体积,因此经典电动力学关于电磁质量的计算是错误的.4、经典电动力学对于电子电磁质量计算的局限性电子半径实验值小于
19、10-16cm,用经典理论算出的电子半径ro=2.8210-13cm并不合符实际.关于电子的电磁质量,这是一个不可能仅仅利用经典电动力学就能解决的问题(过去的历史和大家的计算也多次证明),且经典电动力学在小于电子经典半径尺度下已经不成立.1904 年Lorentz发表了一篇题为 Electromagnetic Phenomena in a System Moving with Any Velocity Less than that of Light 的文章, 在这篇文章中他运用自己此前几年在研究运动系统的电磁理论时提出的包括长度收缩、 局域时间 (local time) 在内的一系列假设, 计
20、算了具有均匀面电荷分布的运动电子的电磁动量, 由此得到电子的 “横质量” mT 与 “纵质量” mL ,分别为 (这里用的是 Gauss 单位制): mT = (2/3)(e2/Rc2); mL = (2/3)(e2/Rc2)3 ,其中 e 为电子的电荷, R 为电子在静止参照系中的半径, c 为光速, =(1-v2/c2)-1/2. 撇开系数不论, Lorentz 的这两个结果与后来的狭义相对论完全相同. 但 Lorentz 的文章一发表就遭到了经典电子论的另一位主要人物 M. Abraham (1875-1922) 的批评. Abraham 指出, 质量除了象 Lorentz 那样通过动量
21、来定义, 还应该可以通过能量来定义.比方说纵质量可以定义为 mL=(1/v)(dE/dv). 但是简单的计算却表明, 用这种方法得到的质量与 Lorentz 的结果完全不同! 很明显, 这说明 Lorentz 的电子论有缺陷. 那么缺陷在哪里呢? Abraham 提出 Lorentz 的计算忽略了为平衡电子电荷间的排斥力所必需的张力. 没有这种张力, Lorentz 的电子会在各电荷元的相互排斥下土崩瓦解. 除 Abraham 外, 另一位经典物理学的大师 H. Poincar (1854-1912) 也注意到了 Lorentz 电子论的这一问题. Poincar 与 Lorentz 是 Ei
22、nstein 之前在定量结果上最接近狭义相对论的物理学家. 不过比较而言, Lorentz 的工作更为直接, 为了调和以太理论与实验的矛盾, 他具体提出了许多新的假设, 而 Poincar 往往是在从美学与哲学角度审视 Lorentz 及其他人的工作时对那些工作进行修饰及完善. 这也很符合这两人的特点, Lorentz 是一位第一流的 working physicist, 而 Poincar 既是第一流的数学及物理学家, 又是第一流的科学哲学家. 1904 年至 1906 年间 Poincar 亲自对 Lorentz 电子论进行了研究, 并定量地引进了为维持电荷平衡所需的张力, 这种张力因此而
23、被称为 Poincar 张力 (Poincar stress). 在 Poincar 工作的基础上, 1911 年 (即在 Einstein 与 Minkowski 建立了狭义相对论的数学框架之后), M. von Laue (1879-1960) 证明了带有 Poincar 张力的电子的能量动量具有正确的 Lorentz 变换规律.在物理学历史上,只有以洛仑兹为代表的电子论才自觉地考虑过这个问题,我们称之为“洛仑兹问题”.电子论既然把一切物理运动归结为电子运动,也就把一切物理运动最终归结为洛仑兹问题.电子论采用刚球模型和推迟解,导出了一个电子动力学方程.汤姆逊首先得到这一方程,我们称之为汤姆
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 现代 物理学 基础 思考 之一 质量 概念 发展 历程
链接地址:https://www.31ppt.com/p-4035869.html