鲁教版八年级下册第七章-二次根式复习课件.ppt
《鲁教版八年级下册第七章-二次根式复习课件.ppt》由会员分享,可在线阅读,更多相关《鲁教版八年级下册第七章-二次根式复习课件.ppt(57页珍藏版)》请在三一办公上搜索。
1、二次根式,课题,学习目标,1、能够比较熟练地应用二次根式的性质进行化简.2、能够比较熟练地进行二次根式的运算.3、会运用二次根式的性质及运算解决简单的实际 问题.,学习目标,二 次 根 式,概念,性质,运算,知识回顾,知识回顾,一、二次根式的意义,二、二次根式的性质,四、反思提升,三、二次根式的运算,一、二次根式的意义,你能说说对二次根式 的认识吗?,2.a可以是数,也可以是式.,3.形式上含有二次根号.,1.表示a的算术平方根.,注:正确理解和运用二次根式的概念是学好本章的关键之一.,一、二次根式的意义,例1、下列各式中哪些是二次根式?哪 些不是?为什么?,思路启迪:二次根式应同时具备下列三
2、个条件:(1)含有根号;(2)根指数是2;(3)被开方数是非负数.,典型例题,典型例题,例2、x取何值时,下列二次根式有意义?,解:,思路启迪:判断二次根式是否有意义的基本 依据是:被开方数为非负数;分母不等于零。,典型例题,例3、二次根式的非负性的应用.,1、已知:+=0,求 x-y 的值.,2、已知x,y为实数,且+3(y-2)2=0,则x-y的值为()A.3 B.-3 C.1 D.-1,解:由题意,得 x-4=0 且 2x+y=0,解得 x=4,y=-8,x-y=4-(-8)=4+8=12,D,典型例题,解:x-1=0 且 y-2=0;x=1 y=2,点评:初中阶段,课本中出现的三种非负
3、数已全部学完这三种非负数是:实数的绝对值;实数的偶次方;非负数的算术平方根利用非负数的意义求值,是解决代数式求值问题时常用的方法之一,x为何值时,下列各式在实数范围内有意义.,及时反馈,及时反馈,二、二次根式的性质,二、二次根式的性质,1、与 区别:意义不同 表示a的算术平方根的平方,表示a的平方的算术平方根 a的取值范围不同(ao);(a为任意实数)2、联系:当a0时,=a,3、积的算术平方根的性质,4、商的算术平方根的性质,二、二次根式的性质,注:正确理解和运用二次根式的性质是学好本章的关键之一.,计算:,典型例题,例1、,解:,思路启迪:利用 可以把二次根式化简,典型例题,例2、把下列各
4、式写成平方差的形式,再在实数范围内分解因式;,典型例题,思路启迪:利用 可以把任何一个非负数或非负式子写成完全平方形式,例2、把下列各式写成平方差的形式,再在实数范围内分解因式;,典型例题,化简:,思考:,解:,典型例题,例3、,思路启迪:利用 可以把二次根式化简,若x0呢?,典型例题,例4、化简:,3,把a-3当做整体,化简形如 的二次根式,首先把 写成|a|的形式,再根据已知条件中字母a 的取值范围,确定其结果.,方法小结,化简形如 的二次根式的方法:,一定要注意a的取值范围,例5、判断下列各式中哪些是最简二次根式,哪些不是?为什么?(字母为正数),典型例题,思路启迪:根据最简二次根式的条
5、件来判断,不满足其中任意一个条件的,都不是最简二次根式,最简二次根式的三个条件:(1)被开方数中不含能开得尽方的因数或 因式;(2)被开方数不含分母;(3)分母中不含有根号.,典型例题,例6、化简(字母为正数),典型例题,例6、化简(字母为正数),思路启迪:若被开方数是积的形式,把能开得尽的方的因数或因式开出来;若被开方数不是积的形式,应先化成积的形式,再把可以开得尽方的因数或因式开出来,解:,典型例题,思路启迪:化去根号中的分母,可以将被开方数的分子和分母同乘以一个适当的数(或代数式),从而使被开方数中的分母能够开的尽,这样也就将二次根式进行化简了.,典型例题,思路启迪:化去分母中的根号的关
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 鲁教版八 年级 下册 第七 二次 根式 复习 课件
链接地址:https://www.31ppt.com/p-4033258.html