风力发电设备技术及产业课件.ppt
《风力发电设备技术及产业课件.ppt》由会员分享,可在线阅读,更多相关《风力发电设备技术及产业课件.ppt(129页珍藏版)》请在三一办公上搜索。
1、1,机械工业出版社,第3章风能、风力发电与控制技术,2,机械工业出版社,3,机械工业出版社,本章主要内容3.1 风的特性及风能利用3.2 风力发电机组及工作原理3.3 风力发电机组的控制策略3.4 风力发电机组的并网运行和功率补偿3.5 风力发电的经济技术性评价,4,机械工业出版社,绪 论,在新能源发电技术中,风力发电是其中最接近实用和推广的一种。风力发电是一个综合性较强的系统,涉及空气动力学、机械、电机和控制技术等领域。风力发电是在大量利用风力提水的基础上发展起来的,它首先起源于丹麦,目前丹麦已成为世界上生产风力发电设备的大国。20世纪70年代世界连续出现石油危机,随之而来的环境问题迫使人们
2、考虑可再生能源利用问题,风力发电很快重新提上了议事日程。风力发电是近期内最具开发利用前景的可再生能源,也将是21世纪中发展最快的一种可再生能源。,5,机械工业出版社,感性认识:各式风机,6,机械工业出版社,7,机械工业出版社,8,机械工业出版社,9,机械工业出版社,3.1 风的特性及风能利用,3.1.1 风的产生 风是地球上的一种自然现象,由太阳辐射热和地球自转、公转和地表差异等引起,大气是这种能源转换的媒介。,图3-1 地球上风的运动,10,机械工业出版社,3.1.2 风的特性与风能,1、随机性2、风随高度的变化而变化 不同高度风速的表达式:,式中 距地面高度为h处的风速(ms);0高度为h
3、0处的风速(ms),一般取h0为10m;k修正指数,它取决于大气稳定度和地面粗糙度等,其值约 为0.1250.5。,11,机械工业出版社,3.1.3 风的表示及应用1、风向,风向一般用16个方位表示,也可以用角度表示。图示方向方位图,图3-2 风向方位图,12,机械工业出版社,2、风速 由于风时有时无、时大时小,每一瞬时的速度都不相同,所以风速是指一段时间内的平均值,即平均风速。3、风力 风力等级是根据风对地面或海面物体影响而引起的各种现象,按风力的强度等级来估计风力的大小。国际上采用的为蒲福风级,从静风到飓风共分为13个等级。,风力等级与风速的关系:,式中 VNN级风的平均风速(m/s);N
4、风的级数。,13,机械工业出版社,4、风能(1)风能密度,空气在一秒钟内以速度流过单位面积产生的动能。表达式为:,(2)风能,空气在一秒钟时间内以速度流过面积为S截面的动能。,表达式为:,(3)风能利用,风能的利用主要是将大气运动时所具有的动能转 化为其他形式的能量。,14,机械工业出版社,风能转换及应用情况如图所示。,图3-5 风能转换与应用情况,15,机械工业出版社,3.2 风力发电机组及工作原理3.2.1 风力发电机组的结构及分类,1、风力发电机组的分类,风力发电机组的分类一般有3种,如下表所示。,16,机械工业出版社,按风轮轴的安装型式,按风力发电机的功率,按运行方式,水平轴风力发电机
5、组和垂直轴风力发电机组,微型(额定功率501000W)、小型(额定功率1.010kW)、中型(额定功率10100kW)和大型(额定功率大于100kW),独立运行和并网运行,17,机械工业出版社,2、风力发电机组的结构 风力发电机组中,水平轴式风力发电机组是目前技术最成熟、产量最大的形式;垂直轴风力发电机组因其效率低、需起动设备等技术原因应用较少,因此下面主要介绍水平轴风力发电机组的结构。,18,机械工业出版社,(1)独立运行的风力发电机组,水平轴独立运行的风 力发电机组主要由风轮(包括尾舵)、发电机、支架、电缆、充电控制器、逆变器、蓄电池组等组成,其主要结构见右图。,图3-6 水平轴独立运行的
6、风力发电机组主要结构,19,机械工业出版社,并网运行的水平轴式风力发电机组由风轮、增速齿轮箱、发电机、偏航装置、控制系统、塔架等部件组成,其结构如右图所示,(2)并网运行的风力发电机组,图3-7 并网运行的水平轴风力发电机组的原理框图,20,机械工业出版社,并网运行的大型风力发电机组的基本结构,它由叶片、轮毂、主轴、增速齿轮箱、调向机构、发电机、塔架、控制系统及附属部件(机舱、机座、回转体、制动器)等组成,结构如右图。,(3)大型风力发电机组,图3-8 大型风力发电机组的基本结构,21,机械工业出版社,3.2.2 风力机 风力机又称为风轮,主要有水平轴风力机和垂直轴风力机。1、水平轴风力机:a
7、.荷兰式 b.农庄式 c.自行车式 d.桨叶式,图3-9 水平轴风力机,22,机械工业出版社,2、垂直轴风力机:a.萨窝纽斯式 b.达里厄式 c.旋翼式,图-10 垂直轴风力机,23,机械工业出版社,水平轴,垂直轴,24,机械工业出版社,3.2.3 风力机的气动原理,风力发电机组中的风轮之所以能将风能转化为机械能,原因是因为风力机具有特殊的翼型。图示为现代风力机叶片的翼型及翼型受力分析图。,图3-11 风力机的叶片翼型及受力,25,机械工业出版社,现分析风轮不动时受到风吹的情况:当风以速度矢量 吹向叶片时,在翼型的上表面,风速减小,形成低压区,翼型的下表面,风速增大,形成高压区,上下表面间形成
8、压差,产生垂直于翼弦的力 F,力 F 可以分解为与相对风速方向平行的阻力 FD 和垂直于风向的升力 FL,升力使风力机旋转,实现能量的转换。,26,机械工业出版社,风力机的输出功率 当风吹向风力机的叶片时,风力机的主要作用是将风能转化为机械能,风力机的机械输出功率可用式子表示为:,27,机械工业出版社,对应于最大的风力机利用系CPm有一个叶尖速比m,因风速经常变化,为实现风能的最大捕获,风力机应变速运行,以维持叶尖速比m不变。在桨距角一定时,CP与叶尖速比的关系如下图所示。,图3-13 风力机的利用系数与叶尖速比的关系,28,机械工业出版社,3.2.4 风力发电机,在由机械能转换为电能的过程中
9、,发电机及其控制器是整个系统的核心。独立运行的风力发电机组中所用的发电机主要有直流发电机、永磁式交流发电机、硅整流自励式交流发电机及电容式自励异步发电机。并网运行的风力发电机机组中使用的发电机主要有同步发电机、异步发电机、双馈发电机、低速交流发电机、无刷双馈发电机、交流整流子发电机、高压同步发电机及开关磁阻发电机等。,29,机械工业出版社,1、独立运行风力发电机组中的发电机 独立运行的风力发电机一般容量较小,与蓄电池和功率变换器配合实现直流电和交流电的持续供给。独立运行的交流风力发电系统结构如下图所示。,图3-14 独立运行的交流风力发电机系统结构,30,机械工业出版社,(1)直流发电机 直流
10、发电机从磁场产生(励磁)的角度来分,可分为永磁式直流发电机和电磁式直流发电机,典型结构如图示。直流发电机可直接将电能送给蓄电池蓄能,可省去整流器,随着永磁材料的发展及直流发电机的无刷化,永磁直流发电机的功率不断做大,性能大大提高,是一种很有发展前途的发电机。,图3-15 电磁式直流发电机结构,31,机械工业出版社,(2)永磁式交流同步发电机 永磁式交流同步发电机的转子上没有励磁绕组,因此无励磁绕组的铜损耗,发电机的效率高;转子上无集电环,发电机运行更可靠;采用钕铁硼永磁材料制造的发电机体积小,重量轻,制造工艺简便,因此广泛应用于小型及微型风力发电机中。,图3-17 凸极式永磁发电机结构示意图,
11、1定子齿 2定子轭 3永磁体转子 4转子轴 5气隙 6定子绕组,32,机械工业出版社,(3)硅整流自励式交流同步发电机 如下图,硅整流自励式交流同步发电机电路原理图。硅整流自励式交流同步发电机一般带有励磁调节器,通过自动调节励磁电流的大小,来抵消因风速变化而导致的发电机转速变化对发电机端电压的影响,延长蓄电池的使用寿命,提高供电质量。,图3-18硅整流自励式交流同步发电机电路原理图,33,机械工业出版社,(4)电容自励式异步发电机 电容自励式异步发电机是在异步发电机定子绕组的输出端接上电容,以产生超前于电压的容性电流建立磁场,从而建立电压。其电路示意图如下图所示。,图3-19 电容自励式异步发
12、电机电路原理,34,机械工业出版社,并网运行的风力发电机组中所用的发电机,(1)异步发电机 风力异步发电机并入电网运行时,只要发电机转速接近同步转速就可以并网,对机组的调速要求不高,不需要同步设备和整步操作。异步发电机的输出功率与转速近似成线性关系,可通过转差率来调整负载。(2)同步发电机 当发电机的转速一定时,同步发电机的频率稳定,电能质量高;同步发电机运行时可通过调节励磁电流来调节功率因数,既能输出有功功率,也可提供无功功率,可使功率因数为1,因此被电力系统广泛接受。,35,机械工业出版社,36,机械工业出版社,(3)双馈异步发电机 双馈异步发电机是当今最有发展前途的一种发电机,其结构是由
13、一台带集电环的绕线转子异步发电机和变频器组成,变频器有交交变频器、交直交变频器及正弦波脉宽调制双向变频器三种,系统结构如下图所示。,图3-25 双馈异步发电机的系统结构,37,机械工业出版社,38,机械工业出版社,双馈异步发电机工作原理:异步发电机中定、转子电流产生的旋转磁场始终是相对静止的,当发电机转速变化而频率不变时,发电机转子的转速和定、转子电流的频率关系可表示为:式中 f1定子电流的频率(Hz),f1=pn1/60,n1 为同步转速;p发电机的极对数;n转子的转速(r/min);f2转子电流的频率(Hz),因f2=sf1,故f2又称为转差频率。,39,机械工业出版社,根据双馈异步发电机
14、转子转速的变化,双馈异步发电机可以有三种运行状态:1)亚同步运行状态。此时n0,频率为f2的转子电流产生的旋转磁场的转速与转子转速同方向,功率流向如图所示。,40,机械工业出版社,2)超同步运行状态。此时nn1,转差率s0,转子中的电流相序发生了改变,频率为f2的转子电流产生的旋转磁场的转速与转子转速反方向,功率流向如图所示。3)同步运行状态。此时n=n1,f2=0,转子中的电流为直流,与同步发电机相同。,41,机械工业出版社,双馈异步发电机的转子通过双向变频器与电网连接,可实现功率的双向流动,功率变换器的容量小,成本低;既可以亚同步运行,也可以超同步运行,因此调速范围宽;可跟踪最佳叶尖速,实
15、现最大风能捕获;可对有功功率和无功功率进行控制,提高功率因数;能吸收阵风能量,减小转矩脉动和输出功率的波动,因此电能质量高,是目前很有发展潜力的变速恒频发电机。,42,机械工业出版社,(4)无刷双馈异步发电机 无刷双馈异步发电机(Brushless DoublyFed Machine,简称BDFM)的基本原理与双馈异步发电机相同,不同之外是取消了电刷和集电环,系统运行的可靠性增大,但系统体积也相应增大,常用的有级联式和磁场调制型两种类型。,图3-27 级联式无刷双馈异步发电机,图3-28 磁场调制型无刷双馈异步发电机,43,机械工业出版社,(5)开关磁阻发电机 开关磁阻发电机又称为双凸极式发电
16、机(简称SRG),定、转子的凸极均由普通硅钢片叠压而成,定子极数一般比转子的极数多,转子上无绕组,定子凸极上安放有彼此独立的集中绕组,径向独立的两个绕组串联起来构成一相。,图3-29 三相(6/4极)开关磁阻发电机结构,44,机械工业出版社,开关磁阻发电机用作为风力发电机时,其系统一般由风力机、开关磁阻发电机及其功率变换器、控制器、蓄电池、逆变器、负载以及辅助电源等组成,其系统构成如图所示。,开关磁阻发电机的结构简单,控制灵活,效率高而且转矩密度大,在风力发电系统中可用于直接驱动、变速运行,有一定的开发、研究价值。,图3-30 开关磁阻风力发电机系统的构成,45,机械工业出版社,3.3 风力发
17、电机组的控制策略,与一般工业控制系统不同,风力发电机组的控制系统是一个综合性复杂控制系统。尤其是对于并网运行的风力发电机组,控制系统不仅要监视电网、风况和机组运行数据,对机组进行并网与脱网控制,以确保运行过程的安全性和可靠性,还需要根据风速和风向的变化,对机组进行优化控制,以提高机组的运行效率和发电质量,而这正是风力发电机组控制中的关键技术,现代风力发电机组一般都采用微机控制,如下图所示。,46,机械工业出版社,2A/D转换模块 3风向标 4风速计 5频率计 6电压表 7电流表 8控制机构 9执行机构 10液压调速油缸 11调向电机 12其他传感器,图3-32 风力发电机组的微机自控原理框图,
18、47,机械工业出版社,3.3.1 风力发电的特点及控制要求风力发电系统控制的目标主要有四个:保证系统的可靠运行、能量利用率最大、电能质量高、机组寿命延长。风力发电系统常规的控制功能有七个:在运行的风速范围内,确保系统的稳定运行;低风速时,跟踪最佳叶尖速比,获取最大风能;高风速时,限制风能的捕获,保持风力发电机组的输出功率为额定值;减小阵风引起的转矩波动峰值,减小风轮的机械应力和输出功率的波动,避免共振;,48,机械工业出版社,减小功率传动链的暂态响应;控制器简单,控制代价小,对一些输入信号进行限幅;调节机组的功率,确保机组输出电压和频率的稳定。,为实现上述所要求的部分或全部控制功能,风力发电机
19、组的控制技术经历了三个主要发展阶段:从最初的定桨距失速恒频控制到后来的变桨距恒速恒频控制,目前主要发展变桨距或定桨距变速恒频控制。,49,机械工业出版社,3.3.2 并网型风力发电机的功率调节控制,风力机的功率调节方式有定桨距失速调节、变桨距调节和主动失速调节三种。,1、定桨距失速调节 定桨距失速调节一般用于恒速控制,其风力机的结构特点是:桨叶与轮毂的连接是固定的,桨距角固定不变,当风速变化时,桨叶的迎风角度不能随之变化。在风速超过额定风速后利用桨叶翼型本身的失速特性,维持发电机组的输出功率在额定值附近。,50,机械工业出版社,定桨距失速控制的优点是失速调节简单可靠,由风速变化引起的输出功率的
20、控制只通过桨叶的被动失速调节实现,没有功率反馈系统和变桨距机构,使控制系统大为简化,整机结构简单、部件小、造价低。其缺点是叶片重量大、成形工艺复杂,桨叶、轮毂、塔架等部件受力较大,机组的整体效率较低。,2、变桨距风力发电机组的调节与控制 变桨距风力机的整个叶片可以绕叶片中心轴旋转,使叶片的攻角在一定范围(090)变化,变桨距调节是指通过变桨距机构改变安装在轮毂上的叶片桨距角的大小,使风轮叶片的桨距角随风速的变化而变化,一般用于变速运行的风力发电机,主要目的是改善机组的起动性能和功率特性。,51,机械工业出版社,(1)根据其作用可分为三个控制过程:起动时的转速控制,额定转速以下(欠功率状态)的不
21、控制和额定转速以上(额定功率状态)的恒功率控制。a.起动时的转速控制 变距风轮的桨叶在静止时,桨距角为90,当风速达起动风速时,桨叶向0方向转动,直到气流对桨叶产生一定的攻角,风力机获得最大的起动转矩,实现风力发电机的起动 b.额定转速以下(欠功率状态)的控制 为了改善低风速时的桨叶性能,近几年来,在并网运行的异步发电机上,利用新技术,根据风速的大小调整发电机的转差率,使其尽量运行在最佳叶尖速比上,以优化功率输出。,52,机械工业出版社,c.额定转速以上(额定功率状态)的恒功率控制 当风速过高时,通过调整桨叶节距,改变气流对叶片的攻角,使桨距角 向迎风面积减小的方向转动一个角度,增大,功角 减
22、小,如图所示。从而改变风力发电机组获得的空气动力转矩,使功率输出保持在额定值附近,这时风力机在额定点的附近具有较高的风能利用因数。,53,机械工业出版社,a)变桨距风力发电机组的功率曲线,b)定桨距风力发电机组的功率曲线,由图可见,在额定风速以下,两者相似,但在额定风速以上,变桨距风力发电机的输出功率维持恒定,而定桨距风力发电机组的输出功率由于风力机的失速当风速增大时而减小。,54,机械工业出版社,3、变桨距风力发电机组的控制系统 传统的变桨距风力发电机组的控制系统框图如图所示。在起动时实现转速控制,由速度控制器起作用,起动结束后,在额定风速以下,转速环开环,系统不进行控制。当风速达到或超过额
23、定风速时,切换到功率控制,功率控制器根据给定与反馈的功率信号比较后进行功率控制,以维持额定功率不变。,图3-38 传统的变桨距风力发电机组的控制系统框图,55,机械工业出版社,新型控制系统与传统控制系统的主要区别是采用了两个速度控制器及增加了转子电流的控制。其中一个速度控制器的作用与传统的速度控制器相同,既起动时和同步转速附近的转速控制。,另一个速度控制器的作用是在并网后,和功率控制器一起通过转子电流的控制实现电机转差即转速的控制。带转子电流控制器的绕线转子异步发电机的系统结构如图所示。,图3-39 带转子电流控制器的绕线转子异步发电机的系统结构,56,机械工业出版社,转子电流控制器安装在绕线
24、转子异步发电机的转子轴上,通过集电环与转子电路相连,转子电路中外接三相电阻,通过一组电力电子器件来调整转子回路电阻,从而调节发电机的转差率,实现调速的目的,其控制系统原理如下图所示。图中的开关S代表机组启动并网前的控制方式,为转速闭环控制;开关R代表机组并网后的控制方式,为功率闭环控制;RCC为异步发电机的转子电流控制器。,57,机械工业出版社,图3-40 转差可调异步发电机控制原理框图,58,机械工业出版社,变速恒频风力发电机组的调节与控制 1、原理 变速恒频是指发电机的转速随风速变化,通过适当的控制得到输出频率恒定的电能。2、特点 1.可大范围的调节转速,使功率系数保持在最佳值,从而最大限
25、度地吸收风能,系统效率高;2.能吸收和存贮阵风能量,减少阵风冲击对风力发电机产生的疲劳损坏、机械应力和转矩脉动,延长机组寿命,减少噪声;3.可以控制有功功率和无功功率,电能质量高。,59,机械工业出版社,3、调节控制过程(1)起动时通过调节桨距控制发电机的转速,使发电机转速在同步转速附近,寻找最佳时机并网;(2)并网后,在额定风速以下,通过调节发电机的电磁制动转矩使发电机转子的转速跟随风速的变化,保持最佳叶尖速比,确保风能的最大捕获,表现为跟踪控制问题;(3)在额定风速以上,采用发电机转子变速和桨叶节距双重调节,利用风轮转速的变化,存贮或释放部分能量,限制风力机获取能量,提高传动系统的柔性,使
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 风力 发电 设备 技术 产业 课件
链接地址:https://www.31ppt.com/p-4032515.html