毕业设计(论文)模拟D类功率放大器论文.doc
《毕业设计(论文)模拟D类功率放大器论文.doc》由会员分享,可在线阅读,更多相关《毕业设计(论文)模拟D类功率放大器论文.doc(28页珍藏版)》请在三一办公上搜索。
1、摘要全球音视频领域数字化的浪潮以及人们对音视频节能环保的要求,迫使人们尽快研究开发高效,节能,数字化的音频功率放大器。传统的音频功率放大器工作时,直接对模拟信号进行放大,工作期间必须工作于线性放大区,功率耗散较大,虽然采用推挽输出,减小了功率器件的承受功率,但在较大功率情况下,仍然对功率器件构成极大威胁,功率输出受到限制。此外,模拟功率放大器还存在以下的缺点:电路复杂,成本高。常常需要设计复杂的补偿电路和过流,过压,过热等保护电路,体积较大,电路复杂。效率低,输出功率不可能做的很大。D类开关音频功率放大器的工作基于PWM模式:将音频信号与采样频率比较,经过自然采样,得到脉冲宽度与音频信号幅度成
2、正比例变化的PWM波,然后经过驱动电路,加到功率MOS的栅极,控制功率器件的开关,实现放大,将放大的PWM信号送入滤波器,则还原为音频信号。D类功率放大器工作于开关状态,理论效率可达100%,实际的运用也可达80%以上。对于高电感的扬声设备,在设计电路的时候,是可以省去低通滤波器(LPF),这样可以大大的节省体积和花费。而且有更高的保真度,这一点,在国外的5V D类音频功率放大器中已经得到了运用,如:TEXAS公司的TPA2002D2。近几年,国际上加紧了对D类音频功率放大器的研究与开发,并取得了一定的进展,几家著名的研究机构及公司已经试验性地向市场提供了D类音频功率放大器评估模块及技术。这一
3、技术一经问世立即显示出其高效,节能,数字化的显著特点,引起了科研,教学,电子工业,商业界的特别关注。不久的将来,D类音频功率放大器必然取代传统的模拟音频功率放大器。全球音视频领域数字化的浪潮以及人们对音视频节能环保的要求,迫使人们尽快研究开发高效,节能,数字化的音频功率放大器。它应该具有工作效率高,便于与其他数字设备相连接的特点。关键字: 功率放大器;晶体管;D类放大器;音频放大器;LM4651/LM4652目录摘要I1.1 ABI Research全球射频功率放大器市场前景11.1.1 展望市场11.1.2 中国市场11.2功放的发展11.2.1 早期的晶体管功放11.2.2 晶体管功放的发
4、展和互调失真21.2.3 功放输入级差动与共射-共基31.2.4放大器的电源与甲类放大器4第2章 音频放大器52.1 音频放大器52.1.1 音频放大器的历史52.1.2 D类放大器的基本结构52.3 脉宽调制(PWM)6第3章 D类音频功率放大器的研究与实现83.1 D类放大器的电路设计83.2 改进型D类功率放大器电路设计93.2.1 脉宽调制电路(PWM)设计93.2.2 改进全桥PWM方案的模拟实现方法93.2.3 改进全桥PWM方案的数字实现方法103.3 D类音频功率放大器设计需知103.4 D类音频功率放大器的热耗散分析14第4章 高效D类超低音功率放大器LM4651/ LM46
5、52174.1 引脚功能174.2 主要参数及特点194.2.1 主要参数194.2.2 主要特点204.2.3 原理和应用电路214.3 系统功能简述214.4 待机(Standby)功能214.5 启动程序和定时2146 电流限制和短路保护22电流限制最小设备在10A,但调节RSCKT数值可以适当使电流增大,在输出端短路或场声器失效(出现短路)的情况下,IC将执行安全保护功能。224.7 死区时间设定224.8 过调制保护224.9 反馈放大器和滤波器224.10 误差放大器234.11 外部元件功能说明234.12 结 语24参考文献25致谢26第1章 功率放大器市场前景1.1 ABI
6、Research全球射频功率放大器市场前景1.1.1 展望市场ABIResearch日前发布报告展望全球射频功率放大器市场,报告显示虽然手机基站设备市场收缩,但市场衰落并没有想像中严峻。研究报告也指出,最近15个月射频功放市场上出现两个明显变化:中国供应商开始杀入市场,使用高效率放大器的设计增长。ABIResearch研究主管LanceWilson表示,“虽然射频功率放大器市场依然为下滑趋势,但好消息是下降速度没有原先预料那么快。尽管GSM市场缓慢下滑,但用户对EDGE的数据传送率感到满意。同时,许多运营商在3G相关的开支方面更加谨慎,导致GSM系统的生存周期加长,这也反过来减缓了3G的增长步
7、伐。这对功率放大器和器件市场带来直接影响。” 1.1.2 中国市场以华为(Huawei)和中兴通信(ZTE)为代表的中国厂商积极进入射频功率放大器市场,现在已经开始瞄准器件市场。“这对市场来说既是机会又是挑战,现在中国厂商在射频功率放大器市场中规模还不大。”许多中国厂商专门针对国内市场,这有助于在初期解决设备需求问题。中国开始部署TD-SCDMA也将促进整体市场增长。 用于无线网络设备的高效率射频放大器正在开始进入主流市场,未来5年数量将进一步增加。放大器效率高意味着基站成本更低,包括最初采购成本低,以及更低的功率消耗和操作成本。 1.2功放的发展音频功率放大器是一个技术已经相当成熟的领域,几
8、十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。回顾一下功率放大器的发展历程,对我们广大音响爱好者来说也许是一件饶有趣味的事情。1.2.1 早期的晶体管功放 半导体技术的进步使晶体管放大器向前迈进了一大步。自从有了晶体管,人们就开始用它制造功率放大器。 早期的放大器几乎全用锗管来制作,但由于锗管工艺上的一些原因,使得放大器中所用的晶体管,尤其是功放管性能指标不易做得很高,例如,共发射极截止频率fh的典型值为4kHz,大电流管的耐压值一般在30V一40V左右。这样,放大器的频率响应也就很狭窄,其3dB截止频率通常在10kHz左右,大大影响了音乐
9、中高频信号的重现。再加上功放管的耐压、电流和功耗三个指标相互制约,制作较大功率的OTL或OCL放大器不易寻到三个指标都满足要求的管于,所以不得不采用变压器耦合输出。变压器的相移又使电路中加深度负反馈变得很困难,谐波失真得不到充分的抑制,因此这一时期的晶体管放大器音质是很差的。“还是胆机规声”,这种看法的确事出有因。 1.2.2 晶体管功放的发展和互调失真 随着半导体工艺的逐渐成熟,大电流、高耐压的晶体管品种日益增加,越来越多的功率放大器采用了无输出变压器的OCL电路或OTL电路。最初的大功率PNP管是锗管,而NPN管是硅管,两者的特性差别非常显著,电路的对称性很差,人们更多采用的是图二所示的准
10、互补电路,通过小功率硅管Q1与一只大功率的NPN硅管Q2复合,得到一只极性与PNP管类似的大功率管,降低了电路因对称性差而招至的失真。到了六十年代末,大功率的PNP硅管商品化的时候,互补对称电路才得到广泛的应用。元器件的进步使晶体管功率放大器的技术指标产生了质的飞跃,在主观音质评价方面,也改变了过去人们对晶体管功放的看法,无论是在厅堂扩音、电台节目制作还是家庭重放,晶体管功放都被大量地采用,首次在数量上以压倒性的优势超过了电子管功放。在商品化的晶体管扩音机中,相继出现了一些摧琛夺目的名机,如JBL的SA600,Marantz互补对称电路MOdel15等等。 尽管电子管的拥护者仍大量存在,人们毕
11、竟能够比较公正地看待晶体管放大器了,认为晶体管机频响宽阔,层次细腻,与电子管机比较起来有一种独特的舱力,而不是简单的谁取代谁的问题。 瞬态互调失真的提出是认识上的一次飞跃七十年代,功率放大器的发展史中出现了一件最引人注目的事情,这就是瞬态互调失真(Transientlntermodulation)及其测量方法的提出。1963年,芬兰Helvar工厂的一名工程师在制作一台晶体管扩音机时,由于接线失误,使电路的负反馈量减少了,后来却意外地发现负反馈量减少后的音质非常好,客观技术指标较差,而更正错误以后的线路尽管技术指标提高了,音质反而比误接时明显下降。这一现象引起了当时同一工厂的Mr.Otala的
12、重视,之后,他对此进行了悉心研究,于1970年首先发表丁关于晶体管功率放大器瞬态互调失真(TIM)的论文。至1971年,Otala博士及其研究小组就TIM失真理论发表的论文已经超过20篇,引起了电声界准互补电路人士的广泛反响。 瞬态互调失真的大意是这样的: 在直接耦合的晶体管放大电路中,为了得到很小的谐波失真度和宽阔平坦的频率响应,通常对整体电路施加深达40dB一60dB的负反馈,倘若在加负反馈前放大器的开环失真为10,那么加上40dB的负反馈后,失真即可降低至01,这是电子管功效难以做到的。晶体管功放由于要施加40dB。60dB的负反馈,所以对一台增益要求为26dB的放大器,它的开环增益就要
13、达到66、86dB。 如此高的增益之下引入深度负反馈,电路势必会产生自激振荡,因而需要进行相位补偿,一般是在推动级晶体管的集电极基极之间接接一个小电容C,破坏自激振荡的相位条件,形成所谓“滞后补偿”, 当放大器输入端输入持续时间非常短的过渡性脉冲时,由于电容C需要充电时间,所以推动管集电极电压要经过一段时间延迟方能达到最大值,。显然,在电容C充、放电期间,输出电压V。将达不到应有的电压值,输入级也不可能得到应有的反馈电压Vf,因而,在过渡脉冲通过输入级的瞬间,输入级将处于负反馈失控状态,致使输入级严重过载,输出将严重削波引起过渡脉冲瞬时失真。如果过渡脉冲波形上还叠加有正弦信号,输出端还会得到很
14、多输入信号频谱不存在的互调频率成份,这就是TIM失真。 TIM失真和音乐信号也有密切关系,音量大、频率高的节目信号容易诱发TIM失真。严重的TIM失真反映在听感上类似高频交选失真,而较弱的TIM失真给人以“金属声”的不快感觉,导致音质劣化。至今,音响界对于TIM失真都还有争议,但这毕竟是人们认识的深化,它使后来放大器的设计思想发生了根本性的变化,即更加注重放大器的动态性能而不是仅仅满足于静态技术指标的提高。 1.2.3 功放输入级差动与共射-共基 对称和平衡是电路发展的方向对称和平衡也许是世上事物完美的标志之一。 音乐讲究各声部之间的乎衡与统一,美术以色彩搭配均衡、和谐为美,在服装设计中,常常
15、采取看似不对称的设计,其实质也是为了取得视觉上的均衡。上面所说的都是艺术,对称和平衡给人一种安定、完美的感觉。有意思的是,在功率放大器中,对称和平衡也有类似的效果。最初采用对称设计的例子要算互补对称电路了,一上一下的两只异极性晶体管作推挽输出,不仅可以免除笨重的输出变压器,而且电路的偶次谐波失真在推挽的过程中被抵消了,保真度有了很大提高。稍后,人们从运算放大器的设计中得到启迪,将左右对称的差动式电路用于功率放木器的输入级,电路的稳定性和线性都得到改善,这一结构直至今天都还有人采用。如果以现代的眼光来审评,这一电路是显得过时了一点。电路的主要缺陷在于电压推动级,因为Q1承担了提供电压增益的主要任
16、务,必然是开环失真很大,频带狭窄。典型的OCL放大器外,单管放大的过载能力也很差,这一系列的缺点是不利于电路的动态性能的。围绕着改进电压推动级的性能,人们相继提出了多种结构,共射共基电路就是一个典型的例子。共射共基电路又叫“猩尔曼”电路,它原先是高频电路中广为采用的结构,但用于音频电路中同样可以发挥出色的性能。首先是它的宽频响,由于共基放大管Qs非常低的输入阻抗,使Q,丧失了电压增益,弥勒效应的影响就非常微弱。宽频响的推动级拉开了与输入级极点的距离,相位补偿变得很容易,而且电容C的容量可以大大减小,这对于改善TIM失真是很有利的。第二个优点是电路的高度线性:共基极电路的输出特性也可以清楚地显示
17、出这一点,有人作过测试,共射一共基电路的失真度比单管共射电路要低一个数量级。 依然是一种不平衡的设计,这一限制来源于输入级。如果把输入级变动一下,从互补推挽的Q:和Qg的集电极输出信号,那么电压推动级就可以在图七的基础上再增加一组NPN管构成的共射一共基电路,做到推挽输出,这时电路也就非常对称平衡了,几乎达到了完美的程度。 当今许多最先进的功率放大器采用的也是这种电路结构。另一种电压推动级的形式,其输入信号来自图六中的Ql和Qs,当然此时Qz必须加上集电极负载电阻。电压推动级也采用对称的差动放大,这不仅可以改善输入级的平衡性,提高放大能力和共模抑制比,而且同样可以降低推动级的失真,因为差动式放
18、大电路当输入在一定的范围内时具有线性的传输特性,有的电路还在Qn、Qz的发射极串人负反馈反阻,更加扩大了线性范围。Q2和Qd构成镜像电流源,把Q,的集电极电流转移到Qz上,所以尽管是单端输出,电流推动能力却比原来增大了一倍。PIONEER的M22K功率放大器就是采用的这种电路结构,取得了非常好的效果。对称和平衡不仅体现在电路的结构上,还表现于元器件的参数上。差动电路是集成运放中广泛采用的结构,其性能是建立在两只差分管Hrs和Vss精确匹配的基础之上。同样,推挽电路中,如果两只异极性的晶体管特性不一致时,对波形的两个半周就不能做到一视同仁地放大,这将增力D电路的失真度。 随着节目源的变化,音乐中
19、包含大量瞬变、高能量的成份,要完美地重现这些细节,就要求放大器具有良好的动态响应,对晶体管配对的要求就不仅是静态的HrR和VBE匹配,而且在动态时也要高度匹配,这无疑对元器件参数的平衡提出了更苛刻的要求。幸运的是,半导体技术的进步为我们提供了这种可能,各种各样的差分对管、晶体管阵列陈出不穷,单个的晶体管一致性也得到较大提高。正是这些优质的元器件,让对称电路设计的优点得以充分体现,今天看到一台全无负反馈的电路也不会觉得惊讶,因为已经有足够好的开环性能了,又何必为了几个仪器上的数据去牺牲放大电路的动态响应呢?1.2.4放大器的电源与甲类放大器 极端重视电源的现代放大器“放大器不过是电源的调制器”,
20、这句话道出了放大的实质。 既然如此,又有什么理由不引起对电源的高度重视呢。电源部份作为推动扬声器发声的源泉,再也不应象过去那样随便找个整流电源接上了事。对电源的要求有两个方面,即纹波噪声小,输出能力强。噪声小比较容易办到,只要加大滤波电容器的容量就可以,但是要做到输出能力强却不简单。 首先要加大电源变压器的容量,这是过去一些放大器生产厂所不乐意的,因为加大电源变压器容量会使成本大量增加,整机的重量和体积也会加大;但现在听小喇叭的人越来越多,这些小喇叭大多效率很低,有些名牌音箱如CelestionSI一6O0或Ro3ersLS35a,十分大食难推,再加上现代节目信号中常常出现一些炮弹爆炸,锣鼓敲
21、击的声音,对放大器是一个极为严峻的考验,同样两台100W的放大器,一台可能让你感觉到大炮地动山摇的震撼力,而另一台可能象是破鼓在“咐咐”作响。第2章 音频放大器2.1 音频放大器2.1.1 音频放大器的历史音频放大器已经快有一个世纪的历史了,最近几年,电子产品正在向薄型化、便携式迅速发展。音质好、电源效率高、发热少的D类放大器成为市场的需求。并且由于D类放大器的耗电低、发热少等诸多特点,越来越得到日益强调环保的市场的认同。同时,便携电子设备的工作时间一直是厂商全力追求的最重要的性能指标,新的无滤波器D类放大器在几瓦特的功率级别上正在取代原先固定的AB类器件。与体积庞大的传统线性放大器相比,使用
22、D类放大器并不影响音频信号的音质却能够实现便携产品的小型化,因此市场对电子产品薄型化、便携式的需求趋势造就了传统放大器向数字放大器的转化。 简单地说,历史上出现过三代D类放大器设计:第一代的范例是由托卡塔设计的TacTMillennium,证实了D类放大器的概念,但是该技术还不能提供足够的性能,这使第一代D类放大器向着实用性的方向发展。第二代D类放大器把一个用于模拟源信号的PWM信号和一个集成的输出级以及片外滤波器组合在一起。这些放大器需要源选择,音量,平衡和音调控制等复杂的前端功能,而这些附加的功能增加了额外的复杂性。但是首先这代放大器变得价格可以承受,其次在低功耗性能上接近甚至超过了AB类
23、放大器,从而获得了一定的应用。第三代是最近一段时间,现有的D类数字放大器较以前的技术已有所改善,他们在音质、封装、性能、价格和核心技术方面都已取得重大改进。为了生成精确的音频,输入晶体管需要在动态范围的两端都能同样出色地工作,以帮助精确地实现准确的功率分配。通过采用一个简单但功能强大的内部控制逻辑系统改善音频输出,并额外增加一套输入晶体管,这些晶体管可以实现对音频信号输入的更精细的控制。最后还不能忽视新的架构技术。2.1.2 D类放大器的基本结构D类放大器的电路共分为三级:输入开关级、功率放大级及输出滤波级。D类放大器工作在开关状态下可以采用脉宽调制(PWM)模式。利用PWM能将音频输入信号转
24、换为高频开关信号。通过一个比较器将音频信号与高频三角波进行比较,当反相端电压高于同相端电压时,输出为低电平;当反相端电压低于同相端电压时,输出为高电平。在D类放大器中,比较器的输出与功率放大电路相连,功放电路采用金属氧化物场效应管(MOSFET)替代双极型晶体管(BJT),这是因为:(1)功率MOSFET是一种高输入阻抗、电压控制型器件,BJT则是一种低阻抗、电流控制型器件。(2)从二者的驱动电路来看,功率MOSFET的驱动电路相对简单,BJT可能需要多达20的额定集电极电流以保证饱和度,而MOSFET需要的驱动电流则小得多,而且通常可以直接由CMOS或者集电极开路TTL驱动电路驱动。(3)M
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业设计 论文 模拟 功率放大器

链接地址:https://www.31ppt.com/p-4027663.html