和式极限的几种求法毕业论文.doc
《和式极限的几种求法毕业论文.doc》由会员分享,可在线阅读,更多相关《和式极限的几种求法毕业论文.doc(13页珍藏版)》请在三一办公上搜索。
1、和式极限的几种求法 摘要 和式极限是分析学的基础和重要工具,也是高等数学教学中一个难点.本文着重介绍了利用数列部分和公式求和式极限,利用定积分定义求和式极限,利用幂级数的展开式求和式极限,利用数项级数收敛性等几种求和式极限的方法.关键词 和式极限 数列 积分 无穷级数1 引言极限是数学分析中非常重要的概念,极限思想始终对于解决分析学中的许多问题起着非常关键的作用,而且和式极限是极限论中的重难点问题.对于如何计算无限多项和式的极限问题,虽然在很多数学教材里均有所涉及,但是少有专题研究它的求法.当我们遇到极限为“无穷多个无穷小之和”的形式(简称无穷和式),就不能用这些常规的方法了.通常是先求出无穷
2、数列前项的和,再求和式的极限.但当数列的前项的和不易求出时,我们就可以考虑用定积分的定义来求它的极限是微分学的灵魂,极限的计算是极限理论的重要内容.本文将详细地归纳出求解和式极限的几种基本方法和运用相关定理求解和式极限的方法.2 求解和式极限的几种方法 一般而言,求解和式极限有求和、夹逼准侧、定积分的定义以及无穷级数展开式求和等方法,以及应用托布利兹(Toeplitz)定理和施笃兹(Stolz)定理求解相关问题,下面以例题的形式介绍一下这几种方法的具体应用. 2.1利用求和的方法求和式极限 是指使用初等的方法数列求和、裂项相消等求出的和,然后再求其极限.例1 求极限. 解 .例2 求极限.解
3、叠加得所以.2.2利用夹逼准则求和式极限 需要构造两个和式或数列将要求极限的和式夹在中间,并使得两边的极限相等,这时往往使用放缩的方法.例3 求极限.解 由于且所以.例4 求极限.解(1)当时,则又,所以当时,(2)当时,则,所以当时(3)当时,则又所以当时综上所述.2.3利用定积分的定义求解和式极限和式极限是一个基本的数学问题,由于解法的多样性,也是一个难题.讨论一类用定积分定义求和式极限的方法,同时这种方法充分表现了和式极限与积分这两个不同的数学概念之间的紧密联系,也表现出求和式极限的多样性与灵活性.和式极限是一类基本的极限,其一般的方法是先求和,然后取极限.但是,有些和式求和并非易事,而
4、有些和式甚至不能求和,怎么求它的极限呢?我们知道,“和”与“积分”是有紧密联系的,有些和式极限,在满足特定的条件下,可以转化为积分.一般需要将极限化为的形,然后根据定积分的定义将极限转化为积分计算.例5 求.解 设由此可知,可看作在上的积分和式其中,于是 原极限.例6 求极限.解 令则有所以.2.4利用幂级数展开式求和式极限讨论由幂级数列所产生的函数项级数 (1)它称为幂级数,是一类最简单的函数项级数,从某种意义上说,它是可以看作室多项函数的延伸.幂级数在理论和实际上都有很多应用,特别是在应用它表示函数方面,使我们对它的作用有很多新的了解和认识.下面将着重讨论.即: (2)的情形,因为只要把(
5、2)中的换成,就得到(1).(阿贝尔定理)若幂级数(2)在收敛,则对满足不等式的任何,幂级数(2)收敛而且绝对收敛;若幂级数(2)在时发散,则对满足不等式的任何,幂级数(2)发散.在函数的幂级数(特别是麦克劳林)展开式中,选取适当的值,即可能转化为通过论数列级数的收敛性求和极限.例7 计算即计算.解 在上两式中令得 (3) (4)(3)(4)得所以.例8 求,收敛域.解 令 取,即得.2.5利用傅里叶级数展开式求和式极限一般地说,若是以为周期且在上可积的函数,则可按公式计算出和,它们称为函数(关于三角函数系)的傅里叶系数,以的傅里叶系数为系数的三角级数称为(关于三角函数系)的傅里叶级数,记作.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 和式极限的几种求法 毕业论文 和式 极限 求法
链接地址:https://www.31ppt.com/p-4021791.html