乘公交看奥运数学建模论文.doc
《乘公交看奥运数学建模论文.doc》由会员分享,可在线阅读,更多相关《乘公交看奥运数学建模论文.doc(59页珍藏版)》请在三一办公上搜索。
1、高教社杯全国大学生数学建模竞赛承 诺 书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的
2、话): 所属学校(请填写完整的全名): 重 庆 大 学 参赛队员 (打印并签名) :1. 2. 3. 指导教师或指导教师组负责人 (打印并签名): 日期: 年 月 日赛区评阅编号(由赛区组委会评阅前进行编号):高教社杯全国大学生数学建模竞赛编 号 专 用 页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):乘公交,看奥运【摘要】本文要解决的问题是以即将举行的08年北京奥运会为背景而提出的。人们为了能现场观看奥运会,必然会面对出行方式与路线选择的问题。因此如何快速、
3、高效地从众多可行路线中选出最优路线成为了解决此问题的关键。鉴于公交系统网络的复杂性,我们没有采用常规的Dijkstra算法,而采用了高效的广度优先算法。其基本思想是从经过起(始)点的路线出发,搜寻出转乘次数不超过两次的可行路线,然后对可行解进行进一步处理。为满足不同查询者要求,我们对三个问题都分别建立了以时间、转乘次数、费用最小为目标的优化模型。针对问题一(只考虑公汽系统),我们建立了模型一并通过VC+编程得到了任意两个站点间的多种最优路线,并得出所求站点间最优路线的最优值,如下表所示:出发站终点站S3359S1828S1557S0481S0971S0485S0008S0073S0148S04
4、85S0087S3676最短耗时(min)641061066710646最少转乘次数(次)121122最少费用(元)333233模型二是根据问题二(同时考虑公汽和地铁系统)建立的,同样用VC+编程得到所求站点间的最优路线,如下表所示:出发站终点站S3359S1828S1557S0481S0971S0485S0008S0073S0148S0485S0087S3676最短耗时(min)64106965587.533最少转乘次数(次)121120最少费用(元)333233对问题三(将步行考虑在内)我们建立了模型三的优化模型,然后在模型改进里又建立了图论模型。本文的主要特点在于,所用算法的效率十分显著
5、。在对原始数据仅做简单预处理的条件下,搜索任意站点间的最优路线所需的平均时间不超过0.5秒。另外,本文所建立的模型简单、所用算法比较清晰,易于程序实现,对公交线路自主查询计算机系统的实现具有现实指导作用。关键字:转乘次数 广度优先算法 查询效率 实时系统一 问题的重述传承华夏五千年的文明,梦圆十三亿华夏儿女的畅想,2008年8月8日这个不平凡的日子终于离我们越来越近了!在观看奥运的众多方式之中,现场观看无疑是最激动人心的。为了迎接2008年奥运会,北京公交做了充分的准备,首都的公交车大都焕然一新,增强了交通的安全性和舒适性,公交线路已达800条以上,使得公众的出行更加通畅、便利。但同时也面临多
6、条线路的选择问题。为满足公众查询公交线路的选择问题,某公司准备研制开发一个解决公交线路选择问题的自主查询计算机系统。这个系统的核心是线路选择的模型与算法,另外还应该从实际情况出发考虑,满足查询者的各种不同需求。需要解决的问题有:1、仅考虑公汽线路,给出任意两公汽站点之间线路选择问题的一般数学模型与算法。并根据附录数据,利用模型算法,求出以下6对起始站到终到站最佳路线。(1)、S3359S1828 (2)、S1557S0481 (3)、S0971S0485(4)、S0008S0073 (5)、S0148S0485 (6)、S0087S36762、同时考虑公汽与地铁线路,解决以上问题。3、假设又知
7、道所有站点之间的步行时间,请你给出任意两站点之间线路选择问题的数学模型。二 符号说明:第i条公汽线路标号,i=1,2 10400,当时, 表示上行公汽路线, 当时, 表示与上行路线相对应的下行公汽路线;:经过第i条公汽路线的第g个公汽站点标号;:第j条地铁路线标号, j=1,2;:经过第j条地铁线路的第h个地铁站点标号;:转乘n次的路线;:选择第k种路线的总时间;:选择第k种路线公汽换乘公汽的换乘次数;:选择第k种路线地铁换乘地铁的换乘次数;:选择第k种路线地铁换乘公汽的换乘次数;:选择第k种路线公汽换乘地铁的换乘次数;:第k种路线、乘坐第m辆公汽的计费方式,其中:表示实行单一票价,表示实行分
8、段计价;:第k种路线,乘坐第m辆公汽的费用; :选择第k种路线的总费用;:选择第k种路线,乘坐第m辆公汽需要经过的公汽站个点数;:选择第k种路线,乘坐第n路地铁需要经过的地铁站个点数; :表示对于第k种路线的第m路公汽的路线是否选择步行,为0-1变量,表示不选择步行,表示选择步行;:对于第k种路线的第n路地铁的路线是否选择步行,为0-1变量,表示不选择步行,表示选择步行;三 模型假设3.1基本假设1、相邻公汽站平均行驶时间(包括停站时间): 3分钟2、相邻地铁站平均行驶时间(包括停站时间): 2.5分钟3、公汽换乘公汽平均耗时:5分钟(其中步行时间2分钟)4、地铁换乘地铁平均耗时:4分钟(其中
9、步行时间2分钟)5、地铁换乘公汽平均耗时:7分钟(其中步行时间4分钟)6、公汽换乘地铁平均耗时:6分钟(其中步行时间4分钟)7、公汽票价:分为单一票价与分段计价两种;单一票价:1元其中分段计价的票价为:0 20站:1元2140站:2元40站以上:3元8、地铁票价:3元(无论地铁线路间是否换乘)9、假设同一地铁站对应的任意两个公汽站之间可以通过地铁站换乘,且无需支付地铁费3.2 其它假设10、查询者转乘公交的次数不超过两次;11、所有环行公交线路都是双向的;12、地铁线T2也是双向环行的;13、各公交车都运行正常,不会发生堵车现象;14、公交、列车均到站停车四 问题的分析在北京举行奥运会期间,公
10、众如何在众多的交通路线中选择最优乘车路线或转乘路线去看奥运,这是我们要解决的核心问题。针对此问题,我们考虑从公交线路的角度来寻求最优线路。首先找出过任意两站点(公众所在地与奥运场地)的所有路线,将其存储起来,形成数据文件。这些路线可能包含有直达公交线路,也有可能是两条公交线路通过交汇而形成的(此时需要转乘公交一次),甚至更多公交线路交汇而成。然后在这些可行路线中搜寻最优路线。对于路线的评价,我们可以分别以总行程时间,总转乘次数,总费用为指标,也可以将三种指标标准化后赋以不同权值形成一个综合指标。而最优路线则应是总行程时间最短,总费用最少或总转乘次数最少,或者三者皆有之。之所以这样考虑目标,是因
11、为对于不同年龄阶段的查询者,他们追求的目标会有所不同,比如青年人比较热衷于比赛,因而他们会选择最短时间内到达奥运赛场观看比赛。而中年人则可能较倾向于综合指标最小,即较快、较省,转乘次数又不多。老年人总愿意以最省的方式看到奥运比赛。而对于残疾人士则总转乘次数最少为好。不同的路线查询需求用图4.1表示如下: 图4.1 公交线路查询目标图经分析,本问题的解决归结为一个求最短路径的问题,但是传统的Dijkstra最短路径算法并不适用于本问题,因为Dijkstra算法采用的存储结构和计算方法难以应付公交线路网络拓扑的复杂性,而且由于执行效率的问题,其很难满足实时系统对时间的严格要求。为此我们在实际求解的
12、过程中,采用了效率高效得广度优先算法,其基本思路是每次搜索指定点,并将其所有未访问过的近邻点加入搜索队列,循环搜索过程直到队列为空。此方法在后文中有详细说明。五 建模前的准备为了后面建模与程序设计的方便,在建立此模型前,我们有必要做一些准备工作。51数据的存储由于所给的数据格式不是很规范,我们需要将其处理成我们需要的数据存储格式。从所给文件中读出线路上的站点信息,存入txt文档中,其存储格式为:两行数据,第一行表示上行线上的站点信息,第二行表示下行线的站点信息,其中下行路线标号需要在原标号的基础上加上520,用以区分上行线和下行线。如果上行线与下行线的站点名不完全相同,那么存储的两行数据相应的
13、不完全相同,以公交线L009为例:L009:3739 0359 1477 2159 2377 2211 2482 2480 3439 1920 1921 0180 2020 3027 2981L529:2981 3027 2020 0180 1921 1920 3439 3440 2482 2211 2377 2159 1478 0359 3739L529为L009所对应的下行线路。如果下行线是上行线原路返回,那么存储的两行数据中的站点信息刚好顺序颠倒,以公交线路L001为例:L001:0619 1914 0388 0348 0392 0429 0436 3885 3612 0819 3524
14、 0820 3914 0128 0710L521:0710 0128 3914 0820 3524 0819 3612 3885 0436 0429 0392 0348 0388 1914 0619如果是环线的情况(如图5.1所示),则可以等效为两条线路:顺时针方向:S1S2S3S4S1S2S3S4;逆时针方向:S1S4S3S2S1S4S3S2。经过分析,此两条”单行路线”线路的作用等同于原环形路线图5.1 环行线路示意图以环形公交线L158为例,此环形路线存储数据如下:L153: 534 649 2355 1212 812 171 170 811 2600 172 1585 814 264
15、3513 1215 1217 251 2604 2606 534 649 2355 1212 812 171 170 811 2600 172 1585 814 264 3513 1215 1217 251 2604 2606L673: 534 2606 2604 251 1217 1215 3513 264 814 1585 172 2600 811 170 171 812 1212 2355 649 534 2606 2604 251 1217 1215 3513 264 814 1585 172 2600 811 170 171 812 1212 2355 649在这里,L153被看作成
16、上行路线,L673被当成下行路线。这样对于每条公交线路都可以得到两行线路存储信息。52搜寻经过每个站点的公交路线处理5.1所得信息,找出通过每个站点的所有公交路线,并将它们存入数据文件中。例如,通过搜寻得出经过站点S0001的线路和经过站点S0002的线路如下:经过S0001的线路有:L421经过S0002的线路有:L027 L152 L365 L395 L48553统计任意两条公交线路的相交(相近)站点依次统计出任意两条公交线路之间相交(相近)的站点,将其存入10401040的矩阵A中,但是这个矩阵的元素是维数不确定的向量,具体实现的时候可以将用队列表示。例如:公交线路L001与公交线路L0
17、25相交的站点为A125=S0619,S1914,S0388,S0348。六 模型的建立与求解61模型一的建立 该模型针对问题一,仅考虑公汽线路,先找出经过任意两个公汽站点与最多转乘两次公汽的路线,然后再根据不同查询者的需求搜寻出最优路线。611 公汽路线的数学表示任意两个站点间的路线有多种情况,如果最多允许换乘两次,则换乘路线分别对应图6.1的四种情况。该图中的A、B为出发站和终点站,C、D、E、F为转乘站点。图6.1 公汽路线图对于任意两个公汽站点与,经过的公汽线路表示为,有;经过的公汽线路表示为,有;1)直达的路线(如图6.1(a)所示)表示为:2)转乘一次的路线(如图6.1(b)所示)
18、表示为:其中:SC为,的一个交点;3)转乘两次的路线(如图6.1(c)所示)表示为: 通过以上转乘路线的建模过程,可以看出不同转乘次数间可作成迭代关系,进而对更多转乘次数的路线进行求寻。不过考虑到实际情况,转乘次数以不超过2次为佳,所以本文未对转乘三次及三次以上的情形做讨论。612最优路线模型的建立 找出了任意两个公汽站点间的可行路线,就可以对这些路线按不同需求进行选择,找出最优路线了:1)以时间最短作为最优路线的模型:行程时间等于乘车时间与转车时间之和。 (6.1式)其中,第k路线是以上转乘路线中的一种或几种。2)以转乘次数最少作为最优路线的模型: (6.2式)此模型等效为以上转乘路线按直达
19、、转乘一次、两次的优先次序来考虑。3)以费用最少作为最优路线的模型: (6.3式)其中, (6.4式)613模型的算法描述针对该问题的优化模型,我们采用广度优先算法找出任意两个站点间的可行路线,然后搜索出最优路线。现将此算法运用到该问题中,结合图6.2叙述如下:(该图中的、表示公汽站点,、表示公汽线路。其中(a)、(b)、(c)图分别表示了从点到点直达、转乘一次、转乘两次的情况)图6.2 公交直达、转乘图(1)首先输入需要查询的两个站点与(假设为起始站,为终点站);(2)搜索出经过的公汽线路(i=1,2,m)和经过的公汽线路(=1,2, ,n),存入数据文件;判断是与是否存在相同路线,若有则站
20、点与之间有直达路线(如图6.2中的),则该路线是换乘次数最少(换乘次数等于0)的路线,若有多条直达路线,则可以在此基础上找出时间最省的路线;这样可以找出所有直达路线,存入数据文件;(3)找出经过的公汽线路(如图6.2中的)中的另一站点和经过的公汽线路中的另一站点。判断与中是否存在相同的点,若存在(如图6.2中的)则站点与间有一次换乘的路线(如图6.2中的与),该相同点即为换乘站点;这样又找出了一次换乘路线,存入数据文件;(4)再搜索出经过(如图6.2中的)线路上除了站点的另一站点(如图6.2中的)的公汽线路(如图6.2中的),找出公汽线路上的其他站点;判断,如果与经过的公汽线路中的其他站点存在
21、相同的点(如图6.2中的),则与间有二次换乘的路线(如图6.2中的、),该相同点和点是换乘站点;将此二次换乘的路线存入数据文件中;(5)对上述存储的经过两个站点与的不同路线,根据不同模型进行最优路线进行搜索,得出查询者满意的最优路线。6. 1. 4模型一的求解根据以上算法和前面建立的模型一,用VC+进行编程(程序见附录)就可以得出不同目标下的最优路线。1) 以耗时最少为目标的最优路线起始站S3359到终到站S1828耗时最少为64 min,耗时最少的最优路线(转乘次数较少,费用较省的路线)有28条(注:表6.1选择了其中的10条表示);起始站S1557到终到站S0481耗时最少为106 min
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 公交 奥运 数学 建模 论文
链接地址:https://www.31ppt.com/p-4020083.html