高光谱遥感图像研究意义及现状.doc
《高光谱遥感图像研究意义及现状.doc》由会员分享,可在线阅读,更多相关《高光谱遥感图像研究意义及现状.doc(7页珍藏版)》请在三一办公上搜索。
1、高光谱遥感图像研究意义及现状1研究高光谱遥感图像的意义12高光谱遥感图像分类以及其基本现状22.1图像预处理32.2定义感兴趣地物类别并标记训练样本32.3特征提取与特征选择42.4分类判决41研究高光谱遥感图像的意义遥感图像是按一定比例尺,客观真实地记录和反映地表物体的电磁辐射的强弱信息,是遥感探测所获得的遥感信息资料的一种表现形式,因此遥感技术应用的核心问题是根据地物辐射电磁辐射强弱在遥感图像上表现的特征,判读识别地面物体的类属及其分布特征。遥感图像特征取决于遥感探测通道、地物光谱特征、大气传播特征及传感器的响应特征等因素。只要了解这些因素对遥感图像特征的影响,则可按图像特征判读地面物体的
2、属性及其分布范围,实现遥感图像的分类识别。高光谱遥感图像是一种高维图像,可反映地物的空间信息和光谱信息,其数据量庞大。随着传感器的不断更新,人们已经可以在不同的航空、航天遥感平台上获取不同时空间分辨率和光谱分辨率的遥感影像。高光谱遥感与以往遥感技术相比,具有图谱合一的特征和从可见光到红外甚至热红外的一系列波段,是一种综合性的遥感技术手段。特别是在地面的信息比较微弱的情况下,高光谱遥感具有识别微弱信息和定量探测的优势。发展高光谱遥感技术,满足军事和民用对该技术的需求,开展该领域的研究是非常必要而有实际意义的。发展以地物精确分类、地物识别、地物特征信息提取为目标的超光谱遥感信息处理模型,提高超光谱
3、数据处理的自动化和智能化水平。高光谱遥感技术将确定物质或地物性质的光谱与揭示其空间和几何关系的图像结合在一起,而许多物质的特征往往表现在一些狭窄的光谱范围内,高光谱遥感实现了获取地物的光谱特征同时又不失其整体形态及其与周围地物的关系。高光谱技术产生的一组图像所提供的丰富信息可以显著地提高数据分析的质量、细节性、可靠性以及可信度,可有效地用于地物类型的像素级甚至亚像素级识别,己广泛应用于地质勘探与地球资源调查、城市遥感与规划管理、环境与灾害监测、精细农业、测绘及考古等方面。当前,世界各国都加强了高光谱遥感技术在各领域的应用研究,比如:在对月球、火星等星体的科学考察中,通过高光谱传感器收集岩石和土
4、壤矿物成分的光谱信息可获知星球的地质状况,具有很好的应用前景;在军事上,星载遥感成像技术和机载遥感对地观测技术是世界各国军事实力竞争的关键之一,高光谱传感器能够检测出普通CCD相机或摄像机无法捕获的各种伪装、隐蔽目标,可应用于战场情报侦察和目标识别。2高光谱遥感图像分类以及其基本现状根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法叫做图像分类。它利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,以代替人的视觉判读。遥感图像分类主要依据是地物的光谱特征,既地物电磁波辐射的多波段测量值,这些测量值可以用作遥感图像分类的原始特征变量。
5、分类是对图像上每个像素按照亮度并接近程度给出对应类别,以达到大致区分遥感图像中多种地物的目的。高光谱图像的分类和识别,主要有两种方法,即基于地物光谱特征的分类识别方法和基于统计的分类识别方法。前者是利用光谱库中已知的光谱数据,采用匹配算法来鉴别和识别图像中地物类型。这种方法既可采用全波长的比较和匹配,也可用感兴趣的光谱特征或部分波长的光谱或光谱组合参量进行匹配,达到分类和识别的目的。基于统计特征的分类,可采用非监督和监督分类两种方法,非监督方法甚至不需要有对数据的先验知识,也可以直接应用原始高光谱遥感图像数据来进行分类,虽然精度有所欠缺,但简单易行,也是常用的方法之一。对高光谱图像的分类,其基
6、本流程如图1所示。图1 图像分类的基本流程2.1图像预处理高光谱图像预处理与一般的图像数据一样,也需要对原始的数据进行基本的大气辐射校正、几何畸变校正、波段选择以及消除噪声等处理。另外由于高光谱图像的数据量大,维数比较高,因此在判别分类处理之前应该对数据进行光谱和空间去冗余以得到高质量的特征,数据降维是高光谱遥感图像数据处理的一个关键预处理环节。2.2定义感兴趣地物类别并标记训练样本在数据分析开始之前,一般先根据三个波段合成的假彩色图像对数据进行整体的直观分析,以产生较详细的类别组,从中定义出用户需要的类别。定义的最优类别需要满足以下三个要求: 完整性:图像中每一个像素都有可以赋予的一个逻辑类
7、别。 可分性:对可得到的光谱特征,各个类别必须具有足够的可分性。 有用性:类别的定义必须满足用户的需要,要有信息价值。类别定义后,就需要为每一个类别选出一定数量的训练样本。训练样本的标记必须依赖于地面真实数据。获取训练样本的过程对不同的数据集以及分析员对场景先验信息了解的多少程度不同有很大的不同。以下给出几种常用方法。 从图像中获取各类别可标记的样本。 在数据获取的同时在地面得到部分观测。 分析表征像素点的光谱空间得到单一像素的类别信息。这些训练样本必须是相应类别的一个均质样本,不能包含其他类别,也不能是和其他类别之间的边界或混合像元,但同时必须包括该类别的变化范围,因此常需对每一个类别标定多
8、于一个的训练区。每类地物的训练样本数目需要相似,如果差别太大容易出现少数归类于多数的现象,另外还需要考虑训练过程的推广性,即训练样本是否已表征整个数据集,训练过程能否推广到类别中为参加训练的其他样本。2.3特征提取与特征选择特征提取和特征选择是遥感图像分类处理过程中一个必不可少的重要环节,一方面能减少参加分类的特征图像的数目,另一方面从原始信息中抽取能更好进行分类的特征图像。特征提取是从原始特征中求出最能反映其类别特征的一组新特征。特征提取能使同类物质样本的分布具有密集性,而不同类别物质的样本在特征空间能够隔离分布,为进一步分类打下了良好的基础。特征选择是依据原始波段图像的量测值,经过一定的变
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 光谱 遥感 图像 研究 意义 现状
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-4017019.html