蜗壳式旋风分离器内的湍流特性.doc
《蜗壳式旋风分离器内的湍流特性.doc》由会员分享,可在线阅读,更多相关《蜗壳式旋风分离器内的湍流特性.doc(11页珍藏版)》请在三一办公上搜索。
1、蜗壳式旋风分离器内的湍流特性摘要:利用等离子体诱导填孔接枝聚合法将聚(N-异丙基丙烯酰胺)(PNIPAM)接枝聚合在聚偏氟乙烯(PVDF)微孔膜上制备了一系列具有较宽接枝率范围的温度感应式开关膜,系统地研究了接枝率对膜的温度感应开关特性的影响。结果表明,开关膜的接枝率对膜的过滤通量、温度感应开关系数和膜孔径感温变化倍数都有十分重要的影响。接枝率在小于等于2.81%时,温度感应开关系数和膜孔径感温变化倍数均随接枝率增加而增加;而对于接枝率大于等于6.38%的膜,膜开关系数和膜孔径感温变化倍数总是趋近于1,膜不具备温度感应开关特性。为了获得预期的开关性能,必须将膜的接枝率控制在适当的范围。关键词:
2、温度感应;开关膜;接枝率;开关特性;渗透性能Turbulence properties in cyclone separator with volute inletAbstract:A series of thermo-responsive gating membranes, with a wide range of grafting yields, were prepared by grafting poly(N-isopropylacrylamide) (PNIPAM) onto porous polyvinylidene fluoride (PVDF) membrane substrat
3、es with a plasma-induced pore-filling polymerization method. The effect of grafting yield on gating characteristics of thermo-responsive gating membranes was investigated systematically. The results showed that the grafting yield heavily affected water flux, responsiveness coefficient and thermo-res
4、ponsive gating factor of membrane pore size. When the grafting yield was smaller than 2.81%, both responsiveness coefficient and thermo-responsive gating factor of pore size increased with increasing grafting yield; however, when the grafting yield was higher than 6.38%, both responsiveness coeffici
5、ent and thermo-responsive gating factor of membrane pore size were always equal to 1, i.e., no gating characteristics existed. In order to obtain a satisfactory gating property of the membrane, the grafting yield must be kept in a proper range. Key words:thermo-responsive;gating membrane;grafting yi
6、eld;gating characteristics;permeability引 言环境感应式开关膜一般是在多孔膜基材上接枝智能化“聚合物刷”作为环境感应开关,该“聚合物刷”开关能感应环境因素的变化而改变它的构象,从而引起膜的渗透性能发生变化。环境感应式开关膜的用途相当广泛,能用于药物控制释放1, 2、化学分离3、化学传感器以及组织工程4等。目前,具有智能开关的环境感应式开关膜是膜学与医用高分子材料领域的研究热点5。迄今,人们已经用辐照诱导接枝、化学接枝以及等离子体诱导接枝等不同的方法在多孔膜上接枝不同类型的智能开关,据报道这些智能开关能对温度、pH值、光、电场、磁场、化学物质以及生物物质等不
7、同环境信息的变化产生感应14, 612。然而,在这类开关膜的接枝率对其膜孔开关特性的影响方面,研究报道尚很少见。本文采用等离子体诱导填孔接枝聚合法在聚偏氟乙烯(PVDF)多孔膜上接枝聚(N-异丙基丙烯酰胺)(PNIPAM)温度感应型开关,制备了一系列具有较宽接枝率范围的感温型开关膜,较系统地研究了开关膜的接枝率对其温度感应开关特性的影响,以期为该类温度感应型开关膜在进一步应用开发中的设计和制备提供指导。1 实验材料和方法1.1 材料聚偏氟乙烯(PVDF)微孔膜,浙江(火炬)西斗门膜工业有限公司提供,平均孔径为0.22 m。N-异丙基丙烯酰胺(NIPAM),由日本Kohjin公司赠送,用正己烷-
8、丙酮(体积比50/50)混合溶剂重结晶3次。氩气,纯度为99.5。实验用水为双重去离子水,电阻为16 M。1.2 等离子体诱导填孔接枝聚合装置等离子体诱导接枝聚合装置如图1所示,它由真空系统、氩气供给系统、SY型射频功率源及SP-II型射频匹配器系统以及反应容器系统等部分组成,其中SY型射频功率源和SP-II型射频匹配器由中国科学院微电子中心提供,功率源的频率为13.56 MHz,最大输出功率为300 W。Fig.1 Plasma-induced pore-filling graft polymerization apparatus1.3 分析测试仪器傅里叶变换红外光谱仪(FT-IR),Spe
9、ctrum one 型,美国P-E Com.;扫描电镜(SEM),JSM-5900LV型,日本电子公司;电子微量天平(精度为0.01 mg),Sartorius BP211D 型,瑞士;真空微滤器(60 mm),浙江(火炬)西斗门膜工业有限公司;低温恒温槽(DC-0506型),上海衡平仪器仪表厂。1.4 PNIPAM接枝开关膜的制备(1) 基材膜的洗净:PVDF多孔基材膜用乙醇洗净,干燥至恒量。(2) 单体溶液的冻结脱气:用氮气置换30 min后的去离子水配成一定浓度的NIPAM单体溶液。用液氮冻结,然后抽真空到1 Pa以下,再解冻;反复34次,直至真空计读数反弹不超过13 Pa。(3) 单体
10、瓶内氩气置换:单体溶液抽真空,然后充入氩气,再抽真空,反复34次使单体瓶中形成氩气氛围,最后单体瓶内压力保持为10 Pa。(4) 等离子体引发:对基材瓶内进行氩气置换,反复34次,压力亦控制为10 Pa。启动射频功率源,对基材膜进行等离子体引发处理。(5) 接枝聚合:向基材瓶中导入NIPAM单体溶液,在30 恒温水浴中进行接枝聚合反应。反应进行到设定时间后,导入氧气使反应停止。(6) 接枝膜的清洗:将接枝膜浸入双重去离子水,在30 恒温水浴中进行振荡清洗24 h,每隔8 h更换一次去离子水。清洗后,膜在50 下真空干燥至恒量。PNIPAM在PVDF基材膜上的接枝情况用FT-IR和SEM进行表征
11、。接枝量的大小用接枝率来表示,即PVDF多孔基材膜接枝PNIPAM开关前后的质量变化率,用下式计算 (1)1.5 PNIPAM接枝开关膜的温度感应性能实验PNIPAM接枝开关膜的温度感应开关特性用其在不同温度条件下真空过滤时水通量(J)的变化来进行表征。在不同温度条件下,真空过滤压差恒定为-90 kPa。由于PNIPAM的低临界溶解温度(LCST)一般在32 左右,所以将膜的环境温度变化范围设定为2540 。2 实验结果与讨论2.1 温敏型PNIPAM接枝开关膜的制备与表征2.1.1 等离子体诱导填孔接枝聚合原理 等离子体(无论是惰性气体还是活性气体)只要与高分子材料短时间(数十秒到几分钟)接
12、触就能有效地使高分子材料表面层中产生大量自由基。本实验所采用的是Ar气辉光放电等离子体,基材膜为PVDF微孔膜。产生自由基的反应可表示为ArhneAr+ArAr* (等离子体化)式中 hn为等离子体辐射的紫外光,Ar*为激发态氩分子。等离子体的这些活性物种与PVDF膜孔表面(包括膜孔内表面)将会发生如下一些生成自由基的反应RFRF (受紫外光的作用)RFAr*RF*Ar 或 RFAr (与激发态的原子或分子反应)新产生的自由基可以继续参与各种反应,若导入各种官能团则可接枝生成表面功能层。在膜孔内表面上接枝的PNIPAM链将会起到温度感应开关的作用。2.1.2 PNIPAM接枝膜的FT-IR表征
13、 图2所示为聚偏氟乙烯膜接枝PNIPAM前后的红外光谱图,其中谱线a所示的是接枝前的基材膜,谱线b所示的是接枝PNIPAM后的膜。从图2中可见,同基材膜的IR谱线相比,接枝后的膜的IR谱线在1658.91 cm-1处新增有明显的酰胺特征峰(羰基吸收),在1548.60 cm-1处新增有酰胺特征峰(酰胺基中NH及CN吸收)。这充分证明PNIPAM已成功地接枝到PVDF膜上。Fig.2 IR spectra of PVDF membranesaungrafted;bPNIPAM-grafted2.1.3 具有不同接枝率的开关膜的微观形貌分析 通过改变射频电源放电功率、NIPAM单体浓度和接枝时间可
14、以制备出具有不同接枝率的PNIPAM开关膜。表1所示为不同制备工况条件下制备出的一些PNIPAM开关膜代码及其相应的PNIPAM接枝率。从表1可以看出,当其他条件相同时,PNIPAM接枝率随着放电功率增加而增大。这是由于,放电功率越高,多孔基材膜孔表面因等离子体诱导而产生的自由基数量就会越多,于是在同样反应时间内接枝聚合到膜上的PNIPAM量就会越大。当放电功率相同时,单体溶液中NIPAM浓度增大或者是接枝反应时间延长均会使多孔膜上的PNIPAM接枝量增加。因为随着NIPAM单体浓度的增大以及反应时间的延长都将有更多的NIPAM单体分子扩散到膜孔表面参与接枝反应,从而使膜上的PNIPAM接枝量
15、上升。Table 1 Code and relative grafting yield of some PNIPAM-g-PVDF gating membranesMembrane codeExperimental parameterGrafting yield /%Argon plasma power/WNIPAM concentration in monomer solution/%(mass)Grafting time/minP24103600.19P53011200.79P93012400.80P12203602.81P4303606.38P330312014.03P230318014
16、.95 Plasma treatment time = 60 s.Note: Testing temperature is about 300 K.为了观察具有不同接枝率的PNIPAM开关膜的微观形态,将膜放入液氮中深冷,然后脆断制样,镀金,用扫描电镜观测断面。图3所示为具有不同接枝率的PNIPAM开关膜的断面SEM图。可以看出,3张SEM照片所示的膜结构有明显的区别。图3(a)为未接枝的PVDF微孔基材膜,可以明显看出膜表层以及较疏松的支撑层结构;图3(b)和图3(c)均为PNIPAM接枝后的PVDF膜,可以看出,包括支撑层在内的整个膜厚度范围内膜结构都发生了变化,比基材膜显得致密,这说明沿
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 蜗壳式 旋风 分离器 湍流 特性

链接地址:https://www.31ppt.com/p-4016730.html