激光诱导荧光检测器系统的构建1.doc
《激光诱导荧光检测器系统的构建1.doc》由会员分享,可在线阅读,更多相关《激光诱导荧光检测器系统的构建1.doc(97页珍藏版)》请在三一办公上搜索。
1、激光诱导荧光检测器的研制与性能评价CONFIGURATION OF LASER INDUCED FLUORESCENCE DETECTOR AND EVALUATION OF ITS PERFORMANCE 内容摘要激光诱导荧光检测器(LIFD)是目前用于检测化学及生物样品的最灵敏检测器之一,广泛用于高效液相色谱(HPLC)、微柱液相色谱(Micro-LC)及毛细管电泳(CE)等分离领域。为提高LIFD的检测灵敏度,必须最大限度降低背景源,同时尽可能提高荧光信号的采集效率。本研究以固态二极管激光器为激发光源,构建了基于共聚焦光学配置的LIFD。通过在检测池中设置反射镜,使背离荧光接收光路的荧光
2、信号经反射返回到荧光采集系统,以提高荧光信号的采集效率。长通及带通滤光片的组合使用,最大限度的降低了背景源。构建了适合于HPLC的LIFD检测系统,论文主要包括以下研究工作:第一章对荧光检测的发展过程进行了回顾,讨论了荧光检测技术的原理、荧光分子的激发及去激过程、荧光检测的定量基础,在分析LIFD目前的研究及应用现状基础上,提出论文研究工作的主要内容。第二章采用共聚焦光学配置设计了LIFD的光学系统。对所研制LIFD的基线噪声、漂移、灵敏度、检测限及线性范围等性能指标进行了测试,结果表明,总体性能指标优于Backman公司的MDQ P/ACETM LIF、Unimicro 公司的TriSepT
3、M-2100 LIF及Picometrics公司的ZETALIF等产品的性能指标。对异硫氰酸酯荧光素(FITC)的检测灵敏度大于1012mV/mol/L,而浓度检测限低于10-14 mol/L。第三章在剖析激光诱导荧光检测器各组成光学元件功能的基础上,确定了所研制LIFD的光学元件,包括MBL-蓝光激光器、DM490二色镜、GCO-2112聚光及荧光采集物镜、LP 510长通滤光片及BP 525带通滤光片、GCL-0106622双胶合消色差透镜、CR131光电倍增管。第四章针对普通检测池只能采集所发射单侧球面荧光信号,而另半球面荧光信号未被采集的缺点,设计了反射式Z-型检测池,使与采集光路反方
4、向的荧光信号经反射镜反射而进入到荧光采集系统,从而提高了荧光信号的采集效率,进而使LIFD的检测灵敏度大幅提高。第五章构建了LIFD的光学系统及电路系统,以FITC为衍生化反应试剂,采用柱前衍生化方法,通过对氨基酸样品的检测,考察了HPLC-LIFD检测系统的检测限、线性范围及系统重复性。结果表明所研制LIFD对氨基酸FITC衍生产物的检测限低于10-13 mol/L;线性范围大于104;17种氨基酸衍生物重复测定的结果表明,保留时间的RSD值均小于0.5,LIFD系统具有良好的重复性。关键词:激光诱导荧光检测器,高效液相色谱,共聚焦光学,二极管激光器, Z-型反射式检测池ABSTRACTLa
5、ser-induced fluorescence detector (LIFD) is one of the most sensitive detection modes in chemical and biological separations. In addition, it is well-suited for detection in small volumes, and is widely used in high performance liquid chromatography (HPLC), micro-column liquid chromatography (Micro-
6、LC), capillary electrophoresis (CE) and other separations. The key to achieve the best sensitivity is the ability to maximize signal while minimize background sources. In this study, solid-state diode laser was used as the excitation source, and confocal optical configuration was applied. Furthermor
7、e, a reflective mirror was installed in the flow cell, which could reflect the deviated fluorescent signal to the optical collection system, so as to improve the collection efficiency of fluorescent signal. Meanwhile, a long pass filter coupled with a band pass filter was applied to minimize backgro
8、und sources. Finally, a LIFD detection system suitable for HPLC was established. The main researches and conclusions are as follows.In chapter, the development of the fluorescence detection was reviewed, and principle of fluorescence detection technique was discussed. Moreover, the process of the ex
9、citation and de-excitation of fluorescent molecules, and the quantitative basis of the fluorescence detection were investigated. The main content of this study was proposed based on the analysis of researches and applications of LIFD.In chapter , the LIFD optical system was established based on conf
10、ocal optical configuration. Subsequently, some parameters of the performance, such as baseline noise, baseline drift, sensitivity, limit of detection and dynamic range, were tested systematically. The results showed that the overall performance of the LIFD developed was better than that of some comm
11、ercial detectors, such as MDQ P/ACETM LIF of Backman, TriSepTM-2100 LIF of Unimicro and ZETALIF of Picometrics. The detection sensitivity and limit of the LIFD developed could be over 1012 mV/mol/L and lower than 10-14 mol/L, respectively, when fluorescein isothiocyanate (FITC) was used as the sampl
12、ing.In chapter , the optical components of the LIFD developed were determined, based on the analysis of the function of optical components in LIFD. These components include a MBL-II blue laser, a DM-490 dichroic mirror, GCO-2112 objective, a LP-510 long pass filter, a BP-525 band pass filter, GCL-01
13、06622 doublet achromatic lens, and a CR131 photomultiplier. In chapter , the Z-type reflective flow cell was designed because of the defect that the general flow cell could only collect unilateral spherical fluorescence signal while lose the fluorescence signal of the other hemispherical. With this
14、flow cell, the fluorescence signal in the opposite direction could enter the fluorescence acquisition system by the reflection of a mirror. Accordingly, the collection efficiency of the fluorescence signal and the detection limit and sensitivity of LIFD were improved.In chapter , the optical and ele
15、ctrical system of LIFD was configurated, and overall performance of the LIFD was evaluated. Pre-column derivatizated amino acids were applied in the HPLC-LIFD system,FITC used as the derivatization reagent. According to the detection of amino acids, some parameters of the HPLC-LIFD were tested, whic
16、h included the limit of detection, the dynamic range and the reproducibility of the system. As the results, the limit of detection and the dynamic range of the LIFD could achieve 10-13 mol/L and more than 104, respectively. The detection of 17 kinds of amino acid derivatives represented that the rep
17、roducibility of the LIFD system was good and the RSD of retention time was less than 0.5%.Keywords: laser induced fluorescence detector, high performance liquid chromatography, confocal optics, diode laser, Z-type reflective flow cell 第一章 激光诱导荧光检测仪器进展生命科学的迅速发展对分析仪器的检测灵敏度提出了更高的要求,对生命现象的研究必须深入到单细胞或单分子
18、水平。通过对单分子光谱性质的测量,可以实现对化学反应的途径进行实时监测,特别是对生物大分子进行探测,以提供分子结构与功能之间的信息。单分子检测(single molecules detection,SMD)是分析化学家长期以来一直梦寐以求的一项富有挑战性的前沿领域,达到了分子检测灵敏度的极限,是超低含量物质检测技术的最后一个里程碑。以分子荧光作为检测工具,研究物质的结构及动力学规律获得了巨大的成功,其主要原因在于荧光检测技术具有灵敏度高、荧光性质专一及可为判定分子结构提供的信息量大等特点。传统的分析方法与手段对于检测超低含量如fg(10-15g)、ag (10-18g)是一个极大的挑战,而激光
19、诱导荧光检测(1aser induced fluorescence detection,LIFD)可以满足检测fg及ag水平在灵敏性和选择性等方面的要求,已经被证明是目前灵敏度最高的检测技术之一。近年来LIFD在超痕量生物活性物质的单分子检测方面得到了广泛的应用,尤其是在测定生物样品中的超痕量活性物质和环境污染物等方面,取得了令人瞩目的成就。生物芯片技术的蓬勃发展更为LIFD 提供了良好的发展契机,如毛细管凝胶电脉-激光诱导荧光检测系统已经是DNA序列分析的首选方案,并被用于人类基因组计划。与其他现有的检测技术相比,LIFD具有极高的灵敏度,其检测灵敏度比通常使用的紫外-可见吸收检测高出23个
20、数量级,对于某些荧光效率高的荧光试剂甚至可以实现单分子检测。本章将对荧光检测技术的发展过程进行回顾,详细阐述受激分子的荧光激发和去激过程。在对荧光分子的寿命、量子产率、荧光强度及其影响因素、荧光定量基础等方面进行论述的基础上,系统分析LIFD目前生产厂家及其研究现状,同时对LIFD的应用进行系统综述,进而提出博士后论文研究工作的主要内容。1.1荧光检测技术回顾1565年,西班牙内科医生Nicolas Monardes首次报道了,在一种被称为“Lignum Nephriticum”的木头浸取液中,观察到奇特的蓝光现象。随后,Boyle、Newton及其他科学家对这种木头的浸取液进行了进一步研究,
21、但对产生蓝光现象的机理尚不清楚。直到1852年,Stokes对产生蓝光现象的原因进行了系统考察,发表了著名的文章“On the refrangibility of light”1,他将这一现象解释为蓝光是由于样品吸收入射光导致随后的发射光线所致,且发射光波长大于入射光波长,这就是随后被公认的Stokes定律。1853年Stoks将所观察到的发射光线定义为荧光(fluorescence)2。表1.1给出了早期研究荧光及磷光的主要科学家及其主要贡献3,4。20世纪初,有更多科学家对荧光现象进行了系统研究,在理论及实验技术上得到长足发展,表1.2给出了二十世纪初期对荧光及磷光的研究作出突出贡献的科学
22、家及其有代表性贡献5。近几十年来,随着激光、计算机和电子技术的新成就等一些新的科学及技术的引入,极大推动了荧光分析法在理论及实验技术等方面的发展,出现了许多新的理论和新的方法6-9。在我国,二十世纪五十年代初期仅有少数分析化学工作者从事荧光分析研究工作。目前,已逐步形成一支活跃于此研究领域的工作团队,研究内容已从经典的荧光分析方法拓展到新技术和新方法的应用10-19。1.2 荧光检测原理1.2.1受激分子的荧光发射过程当分子吸收光子被激发到激发态后,在返回到基态的同时伴随着荧光的发射,也可能通过其他去激(de-excitation)途径而返回到基态但不发射荧光,如图1.1所示。可能的去激途径主
23、要包括:内部转变(即直接返回到基态,但不发射荧光)、系统间窜跃(有可能同时伴随有磷光现象)、分子内的电荷转移及构象转变等。分子在激发态时,与其他分子相互作用同样可导致的去激过程包括:电子迁移、光子迁移、能量迁移、形成受激二聚体或复合物等。Fig. 1.1 Possible de-excitation pathways of excited molecules如上述这些去激过程所发生的时间与激态分子的寿命接近,则去激过程将和荧光发射过程相互竞争20,21。激态分子的寿命代表了用于观测动态过程的实验时间窗口12。包括基态分子与环境间相互作用在内的任何基态过程都会对荧光的性质如光谱、量子产率、寿命等
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 激光 诱导 荧光 检测器 系统 构建
链接地址:https://www.31ppt.com/p-4016499.html